Shrinkage inverse regression estimation for model-free variable selection

被引:42
|
作者
Bondell, Howard D. [1 ]
Li, Lexin [1 ]
机构
[1] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
关键词
Inverse regression estimation; Non-negative garrotte; Sliced inverse regression; Sufficient dimension reduction; Variable selection; DIMENSION REDUCTION; CENTRAL SUBSPACE;
D O I
10.1111/j.1467-9868.2008.00686.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The family of inverse regression estimators that was recently proposed by Cook and Ni has proven effective in dimension reduction by transforming the high dimensional predictor vector to its low dimensional projections. We propose a general shrinkage estimation strategy for the entire inverse regression estimation family that is capable of simultaneous dimension reduction and variable selection. We demonstrate that the new estimators achieve consistency in variable selection without requiring any traditional model, meanwhile retaining the root n estimation consistency of the dimension reduction basis. We also show the effectiveness of the new estimators through both simulation and real data analysis.
引用
收藏
页码:287 / 299
页数:13
相关论文
共 50 条
  • [21] VALID POST-SELECTION INFERENCE IN MODEL-FREE LINEAR REGRESSION
    Kuchibhotla, Arun K.
    Brown, Lawrence D.
    Buja, Andreas
    Cai, Junhui
    George, Edward, I
    Zhao, Linda H.
    [J]. ANNALS OF STATISTICS, 2020, 48 (05): : 2953 - 2981
  • [22] Shrinkage estimation and variable selection in multiple regression models with random coefficient autoregressive errors
    Fallahpour, Saber
    Ahmed, S. Ejaz
    [J]. STATISTICS & PROBABILITY LETTERS, 2014, 92 : 199 - 208
  • [23] Regression-based, regression-free and model-free approaches for robust online scale estimation
    Schettlinger, Karen
    Gelper, Sarah
    Gather, Ursula
    Croux, Christophe
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2010, 80 (09) : 1023 - 1040
  • [24] SHRINKAGE ESTIMATION AND SELECTION FOR MULTIPLE FUNCTIONAL REGRESSION
    Lian, Heng
    [J]. STATISTICA SINICA, 2013, 23 (01) : 51 - 74
  • [25] A model-free variable selection method for reducing the number of redundant variables
    Song, Anchao
    Ma, Tiefeng
    Lv, Shaogao
    Lin, Changsheng
    [J]. STATISTICS, 2018, 52 (06) : 1212 - 1248
  • [26] Shrinkage estimation in system regression model
    Arashi, Mohammad
    Roozbeh, Mahdi
    [J]. COMPUTATIONAL STATISTICS, 2015, 30 (02) : 359 - 376
  • [27] Shrinkage estimation in system regression model
    Mohammad Arashi
    Mahdi Roozbeh
    [J]. Computational Statistics, 2015, 30 : 359 - 376
  • [28] Pseudo estimation and variable selection in regression
    Wu, Wenbo
    Yin, Xiangrong
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 208 : 25 - 35
  • [29] Variable importance assessment in sliced inverse regression for variable selection
    Jlassi, Ines
    Saracco, Jerome
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (01) : 169 - 199
  • [30] Model selection with componentwise shrinkage in orthogonal regression
    Hagiwara, K
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2003, E86A (07) : 1749 - 1758