Feature-oriented Design of Visual Analytics System for Interpretable Deep Learning based Intrusion Detection

被引:11
|
作者
Wu, Chunyuan [1 ]
Qian, Aijuan [2 ]
Dong, Xiaoju [2 ]
Zhang, Yanling [2 ]
机构
[1] Shanghai Jiao Tong Univ, SJTU ParisTech Elite Inst Technol, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Comp Sci, Shanghai, Peoples R China
关键词
feature-oriented software; explainable artificial intelligence; intrusion detection system; deep learning;
D O I
10.1109/TASE49443.2020.00019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Learning models have demonstrated significant performance on different tasks such as computer vision, natural language processing, etc. In recent years, these models have also achieved remarkable progress in Intrusion Detection Systems. However, the mechanism of these models is often hard to understand, especially for researchers in the domain of network security. In this paper, we propose a visual analytics system for interpretable deep learning based intrusion detection. During the design of this visual analytics system, we follow the requirements and features of explainable artificial intelligence for users in the domain of network security. The system allows users to select the best parameters to construct the model, to better understand the role of neurons in a deep learning model, to select instances and explore the detection mechanism of the model on these instances. We present multiple use cases to demonstrate the effectiveness of our system.
引用
收藏
页码:73 / 80
页数:8
相关论文
共 50 条
  • [1] Feature-oriented modularization of deep learning APIs
    Shi, Yechuan
    Kienzle, Jörg
    Guo, Jin L. C.
    Proceedings - ACM/IEEE 25th International Conference on Model Driven Engineering Languages and Systems, MODELS 2022: Companion Proceedings, 2022, : 367 - 374
  • [2] Feature-Oriented Modularization of Deep Learning APIs
    Shi, Yechuan
    Kienzle, Jorg
    Guo, Jin L. C.
    ACM/IEEE 25TH INTERNATIONAL CONFERENCE ON MODEL DRIVEN ENGINEERING LANGUAGES AND SYSTEMS, MODELS 2022 COMPANION, 2022, : 367 - 374
  • [3] Feature Selection with Deep Reinforcement Learning for Intrusion Detection System
    Priya S.
    Pradeep Mohan Kumar K.
    Computer Systems Science and Engineering, 2023, 46 (03): : 3339 - 3353
  • [4] Feature extraction using Deep Learning for Intrusion Detection System
    Ishaque, Mohammed
    Hudec, Ladislav
    2019 2ND INTERNATIONAL CONFERENCE ON COMPUTER APPLICATIONS & INFORMATION SECURITY (ICCAIS), 2019,
  • [5] Deep learning based latent feature extraction for intrusion detection
    Mighan, Soosan Naderi
    Kahani, Mohsen
    26TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2018), 2018, : 1511 - 1516
  • [6] Research on Feature Selection of Intrusion Detection Based on Deep Learning
    Xin, Mingyuan
    Wang, Yong
    2020 16TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC, 2020, : 1431 - 1434
  • [7] Enhanced Deep Autoencoder Based Feature Representation Learning for Intelligent Intrusion Detection System
    Vaiyapuri, Thavavel
    Binbusayyis, Adel
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (03): : 3271 - 3288
  • [8] A Deep Learning Method With Filter Based Feature Engineering for Wireless Intrusion Detection System
    Kasongo, Sydney Mambwe
    Sun, Yanxia
    IEEE ACCESS, 2019, 7 : 38597 - 38607
  • [9] A deep learning method with wrapper based feature extraction for wireless intrusion detection system
    Kasongo, Sydney Mambwe
    Sun, Yanxia
    COMPUTERS & SECURITY, 2020, 92 (92)
  • [10] Wild Animal Detection using Discriminative Feature-oriented Dictionary Learning
    Gupta, Pragya
    Verma, Gyanendra K.
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND AUTOMATION (ICCCA), 2017, : 104 - 109