Enhanced Deep Autoencoder Based Feature Representation Learning for Intelligent Intrusion Detection System

被引:6
|
作者
Vaiyapuri, Thavavel [1 ]
Binbusayyis, Adel [1 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Coll Comp Engn & Sci, Alkharj, Saudi Arabia
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2021年 / 68卷 / 03期
关键词
Cybersecurity; network intrusion detection; deep learning; autoencoder; stacked autoencoder; feature representational learning; joint learning; one-class classifier; OCSVM; SPARSE AUTOENCODER; EXTRACTION; SVM;
D O I
10.32604/cmc.2021.017665
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the era of Big data, learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system (IDS). Owing to the lack of accurately labeled network traffic data, many unsupervised feature representation learning models have been proposed with state-of-theart performance. Yet, these models fail to consider the classification error while learning the feature representation. Intuitively, the learnt feature representation may degrade the performance of the classification task. For the first time in the field of intrusion detection, this paper proposes an unsupervised IDS model leveraging the benefits of deep autoencoder (DAE) for learning the robust feature representation and one-class support vector machine (OCSVM) for finding the more compact decision hyperplane for intrusion detection. Specially, the proposed model defines a new unified objective function to minimize the reconstruction and classification error simultaneously. This unique contribution not only enables the model to support joint learning for feature representation and classifier training but also guides to learn the robust feature representation which can improve the discrimination ability of the classifier for intrusion detection. Three set of evaluation experiments are conducted to demonstrate the potential of the proposed model. First, the ablation evaluation on benchmark dataset, NSL-KDD validates the design decision of the proposed model. Next, the performance evaluation on recent intrusion dataset, UNSW-NB15 signifies the stable performance of the proposed model. Finally, the comparative evaluation verifies the efficacy of the proposed model against recently published state-of-the-art methods.
引用
收藏
页码:3271 / 3288
页数:18
相关论文
共 50 条
  • [1] Weight embedding autoencoder as feature representation learning in an intrusion detection systems
    Mulyanto, Mulyanto
    Leu, Jenq-Shiou
    Faisal, Muhamad
    Yunanto, Wawan
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 111
  • [2] An Intelligent Deep Feature Based Intrusion Detection System for Network Applications
    Shailaja, K.
    Srinivasulu, B.
    Thirupathi, Lingala
    Gangula, Rekha
    Boya, Thejoramnaresh Reddy
    Polem, Vemulamma
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 129 (01) : 345 - 370
  • [3] An Intelligent Deep Feature Based Intrusion Detection System for Network Applications
    K. Shailaja
    B. Srinivasulu
    Lingala Thirupathi
    Rekha Gangula
    Thejoramnaresh Reddy Boya
    Vemulamma Polem
    Wireless Personal Communications, 2023, 129 : 345 - 370
  • [4] Intrusion detection with autoencoder based deep learning machine
    Kaynar, Oguz
    Yuksek, Ahmet Gurkan
    Gormez, Yasin
    Isik, Yunus Emre
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [5] Network Intrusion Detection System using Feature Extraction based on Deep Sparse Autoencoder
    Lee, Joohwa
    Pak, JuGeon
    Lee, Myungsuk
    11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 1282 - 1287
  • [6] Deep Learning Based Intelligent Intrusion Detection
    Zhang, Xueqin
    Chen, Jiahao
    2017 IEEE 9TH INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN), 2017, : 1133 - 1137
  • [7] Deep Learning-Based Hybrid Intelligent Intrusion Detection System
    Khan, Muhammad Ashfaq
    Kim, Yangwoo
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (01): : 671 - 687
  • [8] Deep Learning Approach for Intelligent Intrusion Detection System
    Vinayakumar, R.
    Alazab, Mamoun
    Soman, K. P.
    Poornachandran, Prabaharan
    Al-Nemrat, Ameer
    Venkatraman, Sitalakshmi
    IEEE ACCESS, 2019, 7 : 41525 - 41550
  • [9] Intrusion detection System Using deep Learning Asymmetric Autoencoder (dLAA)
    Singh A.
    Chauhan S.
    Gupta S.
    Yadav A.K.
    International Journal of Fuzzy System Applications, 2022, 11 (02):
  • [10] Autoencoder-based deep metric learning for network intrusion detection
    Andresini, Giuseppina
    Appice, Annalisa
    Malerba, Donato
    INFORMATION SCIENCES, 2021, 569 (569) : 706 - 727