Feature-oriented Design of Visual Analytics System for Interpretable Deep Learning based Intrusion Detection

被引:11
|
作者
Wu, Chunyuan [1 ]
Qian, Aijuan [2 ]
Dong, Xiaoju [2 ]
Zhang, Yanling [2 ]
机构
[1] Shanghai Jiao Tong Univ, SJTU ParisTech Elite Inst Technol, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Comp Sci, Shanghai, Peoples R China
关键词
feature-oriented software; explainable artificial intelligence; intrusion detection system; deep learning;
D O I
10.1109/TASE49443.2020.00019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Learning models have demonstrated significant performance on different tasks such as computer vision, natural language processing, etc. In recent years, these models have also achieved remarkable progress in Intrusion Detection Systems. However, the mechanism of these models is often hard to understand, especially for researchers in the domain of network security. In this paper, we propose a visual analytics system for interpretable deep learning based intrusion detection. During the design of this visual analytics system, we follow the requirements and features of explainable artificial intelligence for users in the domain of network security. The system allows users to select the best parameters to construct the model, to better understand the role of neurons in a deep learning model, to select instances and explore the detection mechanism of the model on these instances. We present multiple use cases to demonstrate the effectiveness of our system.
引用
收藏
页码:73 / 80
页数:8
相关论文
共 50 条
  • [41] An Effective Intrusion Detection System for Securing IoT Using Feature Selection and Deep Learning
    Parimala, G.
    Kayalvizhi, R.
    2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
  • [42] Network intrusion detection using feature fusion with deep learning
    Ayantayo, Abiodun
    Kaur, Amrit
    Kour, Anit
    Schmoor, Xavier
    Shah, Fayyaz
    Vickers, Ian
    Kearney, Paul
    Abdelsamea, Mohammed M.
    JOURNAL OF BIG DATA, 2023, 10 (01)
  • [43] Network intrusion detection using feature fusion with deep learning
    Abiodun Ayantayo
    Amrit Kaur
    Anit Kour
    Xavier Schmoor
    Fayyaz Shah
    Ian Vickers
    Paul Kearney
    Mohammed M. Abdelsamea
    Journal of Big Data, 10
  • [44] Multi-Channel Deep Feature Learning for Intrusion Detection
    Andresini, Giuseppina
    Appice, Annalisa
    Di Mauro, Nicola
    Loglisci, Corrado
    Malerba, Donato
    IEEE ACCESS, 2020, 8 : 53346 - 53359
  • [45] Hybrid Multichannel-Based Deep Models Using Deep Features for Feature-Oriented Sentiment Analysis
    Ahmad, Waqas
    Khan, Hikmat Ullah
    Iqbal, Tasswar
    Khan, Muhammad Attique
    Tariq, Usman
    Cha, Jae-hyuk
    SUSTAINABILITY, 2023, 15 (09)
  • [46] Machine Learning-Based Intrusion Detection System for Big Data Analytics in VANET
    Zang, Mingyuan
    Yan, Ying
    2021 IEEE 93RD VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-SPRING), 2021,
  • [47] A Deep Learning-Based Framework for Feature Extraction and Classification of Intrusion Detection in Networks
    Naveed, Muhammad
    Arif, Fahim
    Usman, Syed Muhammad
    Anwar, Aamir
    Hadjouni, Myriam
    Elmannai, Hela
    Hussain, Saddam
    Ullah, Syed Sajid
    Umar, Fazlullah
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [48] Performance analysis and feature selection for network-based intrusion detection with deep learning
    Caner, Serhat
    Erdogmus, Nesli
    Erten, Y. Murat
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2022, 30 (03) : 629 - 643
  • [49] Deep Reinforcement Learning based Intrusion Detection System for Cloud Infrastructure
    Sethi, Kamalakanta
    Kumar, Rahul
    Prajapati, Nishant
    Bera, Padmalochan
    2020 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS (COMSNETS), 2020,
  • [50] Deep Learning-Based Intrusion Detection System for Internet of Vehicles
    Ahmed, Imran
    Jeon, Gwanggil
    Ahmad, Awais
    IEEE CONSUMER ELECTRONICS MAGAZINE, 2023, 12 (01) : 117 - 123