Convergence of solutions of phase-field systems with a nonconstant latent heat

被引:0
|
作者
Aizicovici, S [1 ]
Petzeltová, H
机构
[1] Ohio Univ, Dept Math, Athens, OH 45701 USA
[2] AV CR, Inst Math, Prague 11567 1, Czech Republic
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2005年 / 14卷 / 01期
关键词
phase-field models; asymptotic behavior; memory terms; real analytic functions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that any global bounded solution of phase-field models with nonlinear latent heat converges to a single stationary state as time goes to infinity. The idea of analyticity plays a key role in our analysis.
引用
收藏
页码:163 / 173
页数:11
相关论文
共 50 条
  • [31] Solutions to a phase-field model of sea ice growth
    Yangxin Tang
    Boundary Value Problems, 2019
  • [32] Stability of Solutions to a Caginalp Phase-Field Type Equations
    Ipopa, Mohamed Ali
    Bangola, Brice Landry Doumbe
    Ovono, Armel Andami
    CONTEMPORARY MATHEMATICS, 2024, 5 (01): : 949 - 958
  • [33] Convergence Check Phase-Field Scheme for Modelling of Brittle and Ductile Fractures
    Lesicar, Tomislav
    Polancec, Tomislav
    Tonkovic, Zdenko
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [34] Convergence of Phase-Field Free Energy and Boundary Force for Molecular Solvation
    Shibin Dai
    Bo Li
    Jianfeng Lu
    Archive for Rational Mechanics and Analysis, 2018, 227 : 105 - 147
  • [35] A comparative accuracy and convergence study of eigenerosion and phase-field models of fracture
    Pandolfi, A.
    Weinberg, K.
    Ortiz, M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 386
  • [36] Some convergence results for a class of nonlinear phase-field evolution equations
    Schimperna, G
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (02) : 406 - 434
  • [37] Convergence of Phase-Field Free Energy and Boundary Force for Molecular Solvation
    Dai, Shibin
    Li, Bo
    Lu, Jianfeng
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 227 (01) : 105 - 147
  • [38] Local existence of solutions of a three phase-field model for solidification
    Calsavara Caretta, Bianca Morelli
    Boldrini, Jose Luiz
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (12) : 1496 - 1518
  • [39] Strong Solutions of an Incompressible Phase-field Model with Variable Density
    Li, Ying-hua
    Wang, Yong
    Cai, Han-bin
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024,
  • [40] SOLUTIONS TO A PENROSE-FIFE MODEL OF PHASE-FIELD TYPE
    LAURENCOT, P
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 185 (02) : 262 - 274