Convergence of solutions of phase-field systems with a nonconstant latent heat

被引:0
|
作者
Aizicovici, S [1 ]
Petzeltová, H
机构
[1] Ohio Univ, Dept Math, Athens, OH 45701 USA
[2] AV CR, Inst Math, Prague 11567 1, Czech Republic
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2005年 / 14卷 / 01期
关键词
phase-field models; asymptotic behavior; memory terms; real analytic functions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that any global bounded solution of phase-field models with nonlinear latent heat converges to a single stationary state as time goes to infinity. The idea of analyticity plays a key role in our analysis.
引用
收藏
页码:163 / 173
页数:11
相关论文
共 50 条
  • [21] LONG TIME CONVERGENCE FOR A CLASS OF VARIATIONAL PHASE-FIELD MODELS
    Colli, Pierluigi
    Hilhorst, Danielle
    Issard-Roch, Francoise
    Schimperna, Giulio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (01) : 63 - 81
  • [22] Convergence of phase-field approximations to the Gibbs-Thomson law
    Roeger, Matthias
    Tonegawa, Yoshihiro
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 32 (01) : 111 - 136
  • [23] Convergence of alternate minimization schemes for phase-field fracture and damage
    Knees, Dorothee
    Negri, Matteo
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (09): : 1743 - 1794
  • [24] A note on a phase-field model for anisotropic systems
    Lussardi, Luca
    ASYMPTOTIC ANALYSIS, 2015, 94 (3-4) : 241 - 254
  • [25] Asymptotic solutions of a phase-field model or alloy solidification
    Clemons, CB
    Hariharan, SI
    Young, GW
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (06) : 1952 - 1979
  • [26] NONLOCAL PHASE-FIELD SYSTEMS WITH GENERAL POTENTIALS
    Grasselli, Maurizio
    Schimperna, Giulio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (11-12) : 5089 - 5106
  • [27] Phase-Field Modeling of Freeze Concentration of Protein Solutions
    Fan, Tai-Hsi
    Li, Ji-Qin
    Minatovicz, Bruna
    Soha, Elizabeth
    Sun, Li
    Patel, Sajal
    Chaudhuri, Bodhisattwa
    Bogner, Robin
    POLYMERS, 2019, 11 (01)
  • [28] Solutions to a phase-field model of sea ice growth
    Tang, Yangxin
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [29] Performance of acceleration techniques for staggered phase-field solutions
    Schapira, Yaron
    Radtke, Lars
    Kollmannsberger, Stefan
    Duester, Alexander
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 410
  • [30] Traveling wave solutions for a nonlocal phase-field system
    Bates, PW
    Chen, FZ
    INTERFACES AND FREE BOUNDARIES, 2002, 4 (03): : 227 - 238