Convergence of solutions of phase-field systems with a nonconstant latent heat

被引:0
|
作者
Aizicovici, S [1 ]
Petzeltová, H
机构
[1] Ohio Univ, Dept Math, Athens, OH 45701 USA
[2] AV CR, Inst Math, Prague 11567 1, Czech Republic
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2005年 / 14卷 / 01期
关键词
phase-field models; asymptotic behavior; memory terms; real analytic functions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that any global bounded solution of phase-field models with nonlinear latent heat converges to a single stationary state as time goes to infinity. The idea of analyticity plays a key role in our analysis.
引用
收藏
页码:163 / 173
页数:11
相关论文
共 50 条