The high-pressure melting temperature of hexagonal close-packed iron determined from thermal physics

被引:25
|
作者
Anderson, OL [1 ]
Isaak, DG [1 ]
Nelson, VE [1 ]
机构
[1] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
phase transitions; equations-of-state; metals; thermodynamic properties; thermal expansion;
D O I
10.1016/S0022-3697(03)00112-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The melting temperature, T-m, of hexagonal close-packed (hcp) iron at pressures corresponding to the Earth's core is derived using two thermal physics methods. The first, Gilvarry's rule, follows from the assumption that melting occurs when the root mean square amplitude of atomic vibration is a certain fraction of the interatomic distance. The second, the Stacey-Irvine formula, follows from assuming that the Gibbs free energy of both solid and liquid phases are equal in value. A crucial pressure is 330 GPa, the pressure at which Earth's solid inner core is in thermal equilibrium with its liquid outer core. We find melting temperatures at 330 GPa of 5905 or 6050 K when the Gilvarry and the Stacey-Irvine formulae, respectively, are used. These calculations are made possible by the recent experimental determination of the vibrational Gruneisen parameter, gamma(vib), and the thermal expansivity, alpha, up to 360 GPa, at 300 K. These T-m (330 GPa) values are in near agreement with the value of 5995 K for hcp iron determined using the dislocation-mediated method. The average result of the three approaches used here indicates that T-m (330 GPa) = 5980 +/- 70 K for hcp iron. This result is consistent with the value of 6000 K for hcp iron sometimes assumed in studies of Earth's core. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2125 / 2131
页数:7
相关论文
共 50 条
  • [41] MAGNETIC-PROPERTIES OF IRON IMPURITIES IN HEXAGONAL CLOSE-PACKED TRANSITION-METALS
    JUND, P
    KOENIG, C
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1993, 127 (1-2) : 41 - 46
  • [42] Rare-earth high entropy alloys with hexagonal close-packed structure
    Qiao, J.W. (qiaojunwei@gmail.com), 1600, American Institute of Physics Inc. (124):
  • [43] Nanoindentation Creep Behavior of Hexagonal Close-Packed High-Entropy Alloys
    Wang, Z.
    Yang, X. W.
    Zhang, Q.
    Qiao, J. W.
    METALS AND MATERIALS INTERNATIONAL, 2024, 30 (09) : 2433 - 2439
  • [44] Elasticity and Poisson's ratio of hexagonal close-packed hydrogen at high pressures
    Goncharov, Alexander F.
    Gauthier, Michel
    Antonangeli, Daniele
    Ayrinhac, Simon
    Decremps, Frederic
    Morand, Marc
    Grechnev, Alexei
    Tretyak, S. M.
    Freiman, Yu. A.
    PHYSICAL REVIEW B, 2017, 95 (21)
  • [45] Rare-earth high entropy alloys with hexagonal close-packed structure
    Qiao, J. W.
    Bao, M. L.
    Zhao, Y. J.
    Yang, H. J.
    Wu, Y. C.
    Zhang, Y.
    Hawk, J. A.
    Gao, M. C.
    JOURNAL OF APPLIED PHYSICS, 2018, 124 (19)
  • [46] Sound velocities of hexagonal close-packed H2 and He under pressure
    Freiman, Yu. A.
    Grechnev, Alexei
    Tretyak, S. M.
    Goncharov, A. F.
    Zha, C. S.
    Hemley, Russell J.
    PHYSICAL REVIEW B, 2013, 88 (21)
  • [47] First-principles study of the high-pressure hexagonal-close-packed phase of mercury
    Jona, F.
    Marcus, P. M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (03)
  • [48] Cation escape from hexagonal close-packed lattice for modelling IPMC actuation
    Zhang, Dehai
    Xu, Chenyu
    Zhang, Zhiqiang
    Wang, Lehui
    Zhou, Jingxin
    Li, Yihao
    Guo, Dongjie
    SENSORS AND ACTUATORS A-PHYSICAL, 2025, 383
  • [49] Synthesis of Hexagonal Close-Packed Cobalt Nanoparticles From Thermolysis of Cobalt Carbonyl
    Takahashi, Kyohei
    Ito, Hiroshi
    Kanada, Isao
    Matsumoto, Hiroyuki
    IEEE MAGNETICS LETTERS, 2023, 14
  • [50] Shear sound velocity of hexagonal close packed iron at extreme pressure
    Sharma, S. K.
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2017, 55 (01) : 60 - 64