The high-pressure melting temperature of hexagonal close-packed iron determined from thermal physics

被引:25
|
作者
Anderson, OL [1 ]
Isaak, DG [1 ]
Nelson, VE [1 ]
机构
[1] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
phase transitions; equations-of-state; metals; thermodynamic properties; thermal expansion;
D O I
10.1016/S0022-3697(03)00112-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The melting temperature, T-m, of hexagonal close-packed (hcp) iron at pressures corresponding to the Earth's core is derived using two thermal physics methods. The first, Gilvarry's rule, follows from the assumption that melting occurs when the root mean square amplitude of atomic vibration is a certain fraction of the interatomic distance. The second, the Stacey-Irvine formula, follows from assuming that the Gibbs free energy of both solid and liquid phases are equal in value. A crucial pressure is 330 GPa, the pressure at which Earth's solid inner core is in thermal equilibrium with its liquid outer core. We find melting temperatures at 330 GPa of 5905 or 6050 K when the Gilvarry and the Stacey-Irvine formulae, respectively, are used. These calculations are made possible by the recent experimental determination of the vibrational Gruneisen parameter, gamma(vib), and the thermal expansivity, alpha, up to 360 GPa, at 300 K. These T-m (330 GPa) values are in near agreement with the value of 5995 K for hcp iron determined using the dislocation-mediated method. The average result of the three approaches used here indicates that T-m (330 GPa) = 5980 +/- 70 K for hcp iron. This result is consistent with the value of 6000 K for hcp iron sometimes assumed in studies of Earth's core. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2125 / 2131
页数:7
相关论文
共 50 条
  • [31] MOSSBAUER STUDIES OF ELECTRONIC PROPERTIES OF IRON IMPURITIES IN HEXAGONAL CLOSE-PACKED METALS
    JANOT, C
    DELCROIX, P
    PHILOSOPHICAL MAGAZINE, 1974, 30 (03): : 651 - 661
  • [33] Elasticity of Hexagonal Close-Packed Iron at Earth’s Inner Core Characterized
    Leonard R. Weisberg
    George D. Cody
    MRS Bulletin, 2001, 26 : 852 - 861
  • [34] A hexagonal close-packed high-entropy alloy: The effect of entropy
    Zhao, Y. J.
    Qiao, J. W.
    Ma, S. G.
    Gao, M. C.
    Yang, H. J.
    Chen, M. W.
    Zhang, Y.
    MATERIALS & DESIGN, 2016, 96 : 10 - 15
  • [35] Deformation mechanisms in hexagonal close-packed high-entropy alloys
    Wang, Z.
    Bao, M. L.
    Wang, X. J.
    Liaw, P. K.
    Guo, R. P.
    Qiao, J. W.
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (17)
  • [36] THERMAL CONDUCTIVITY OF ORIENTED SINGLE CRYSTALS OF HEXAGONAL CLOSE-PACKED HELIUM 4
    HOGAN, EM
    GUYER, RA
    FAIRBANK, HA
    PHYSICAL REVIEW, 1969, 185 (01): : 356 - &
  • [37] Constitutive Relation for Ambient-Temperature Creep in Hexagonal Close-Packed Metals
    Matsunaga, Tetsuya
    Kameyama, Tatsuya
    Takahashi, Kohei
    Sato, Eiichi
    MATERIALS TRANSACTIONS, 2009, 50 (12) : 2858 - 2864
  • [38] Suppression of ambient temperature creep by eutectic phase for hexagonal close-packed metal
    Matsunaga, Tetsuya
    Abe, Tomonori
    Itoh, Shun
    Satoh, Yuhki
    Abe, Hiroaki
    JOURNAL OF NUCLEAR MATERIALS, 2014, 446 (1-3) : 113 - 116
  • [39] X-RAY STUDY OF HE-4 CLOSE-PACKED STRUCTURES AT HIGH-PRESSURE
    MILLS, RL
    SCHUCH, AF
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1974, 16 (3-4) : 305 - 308
  • [40] Crystal structure of the high-pressure γ phase of mercury:: A novel monoclinic distortion of the close-packed structure
    Takemura, K.
    Fujihisa, H.
    Nakamoto, Y.
    Nakano, S.
    Ohishi, Y.
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2007, 76 (02)