The high-pressure melting temperature of hexagonal close-packed iron determined from thermal physics

被引:25
|
作者
Anderson, OL [1 ]
Isaak, DG [1 ]
Nelson, VE [1 ]
机构
[1] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
phase transitions; equations-of-state; metals; thermodynamic properties; thermal expansion;
D O I
10.1016/S0022-3697(03)00112-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The melting temperature, T-m, of hexagonal close-packed (hcp) iron at pressures corresponding to the Earth's core is derived using two thermal physics methods. The first, Gilvarry's rule, follows from the assumption that melting occurs when the root mean square amplitude of atomic vibration is a certain fraction of the interatomic distance. The second, the Stacey-Irvine formula, follows from assuming that the Gibbs free energy of both solid and liquid phases are equal in value. A crucial pressure is 330 GPa, the pressure at which Earth's solid inner core is in thermal equilibrium with its liquid outer core. We find melting temperatures at 330 GPa of 5905 or 6050 K when the Gilvarry and the Stacey-Irvine formulae, respectively, are used. These calculations are made possible by the recent experimental determination of the vibrational Gruneisen parameter, gamma(vib), and the thermal expansivity, alpha, up to 360 GPa, at 300 K. These T-m (330 GPa) values are in near agreement with the value of 5995 K for hcp iron determined using the dislocation-mediated method. The average result of the three approaches used here indicates that T-m (330 GPa) = 5980 +/- 70 K for hcp iron. This result is consistent with the value of 6000 K for hcp iron sometimes assumed in studies of Earth's core. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2125 / 2131
页数:7
相关论文
共 50 条
  • [1] High-pressure close-packed structure of boron
    Li, Da
    Bao, Kuo
    Tian, Fubo
    Jin, Xilian
    Duan, Defang
    He, Zhi
    Liu, Bingbing
    Cui, Tian
    RSC ADVANCES, 2014, 4 (01) : 203 - 207
  • [2] Microstructural heterogeneity in hexagonal close-packed pure Ti processed by high-pressure torsion
    Chen, Y. J.
    Li, Y. J.
    Walmsley, J. C.
    Gao, N.
    Roven, H. J.
    Starink, M. J.
    Langdon, T. G.
    JOURNAL OF MATERIALS SCIENCE, 2012, 47 (12) : 4838 - 4844
  • [3] Microstructural heterogeneity in hexagonal close-packed pure Ti processed by high-pressure torsion
    Y. J. Chen
    Y. J. Li
    J. C. Walmsley
    N. Gao
    H. J. Roven
    M. J. Starink
    T. G. Langdon
    Journal of Materials Science, 2012, 47 : 4838 - 4844
  • [4] High-pressure torsion induced microstructural evolution in a hexagonal close-packed Zr alloy
    Wang, Y. B.
    Louie, M.
    Cao, Y.
    Liao, X. Z.
    Li, H. J.
    Ringer, S. P.
    Zhu, Y. T.
    SCRIPTA MATERIALIA, 2010, 62 (04) : 214 - 217
  • [5] CLOSE-PACKED HEXAGONAL ALLOYS OF IRON AND NITROGEN
    HUMEROTHERY, W
    PHILOSOPHICAL MAGAZINE, 1962, 7 (83): : 1955 - &
  • [6] Rheology of Hexagonal Close-Packed (hcp) Iron
    Nishihara, Yu
    Doi, Shunta
    Tsujino, Noriyoshi
    Yamazaki, Daisuke
    Matsukage, Kyoko N.
    Tsubokawa, Yumiko
    Yoshino, Takashi
    Thomson, Andrew R.
    Higo, Yuji
    Tange, Yoshinori
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2023, 128 (06)
  • [7] Stabilization of the hexagonal close-packed phase of cobalt at high temperature
    1600, American Inst of Physics, Woodbury, NY, USA (76):
  • [8] Thermal properties of close-packed iron determined using Hugoniot functions
    Sano, Yukio
    Sano, Tomokazu
    SHOCK COMPRESSION OF CONDENSED MATTER - 2005, PTS 1 AND 2, 2006, 845 : 135 - 138
  • [9] PRESSURE-TEMPERATURE-VOLUME RELATIONSHIP FOR HEXAGONAL CLOSE PACKED IRON DETERMINED BY SYNCHROTRON RADIATION
    HUANG, E
    BASSETT, WA
    TAO, PL
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1987, 92 (B8): : 8129 - 8135
  • [10] The structure of barium in the hexagonal close-packed phase under high pressure
    Zeng, WS
    Heine, V
    Jepsen, O
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (17) : 3489 - 3502