Enhancing performance of magnetized liner inertial fusion at the Z facility

被引:37
|
作者
Slutz, S. A. [1 ]
Gomez, M. R. [1 ]
Hansen, S. B. [1 ]
Harding, E. C. [1 ]
Hutsel, B. T. [1 ]
Knapp, P. F. [1 ]
Lamppa, D. C. [1 ]
Awe, T. J. [1 ]
Ampleford, D. J. [1 ]
Bliss, D. E. [1 ]
Chandler, G. A. [1 ]
Cuneo, M. E. [1 ]
Geissel, M. [1 ]
Glinsky, M. E. [1 ]
Harvey-Thompson, A. J. [1 ]
Hess, M. H. [1 ]
Jennings, C. A. [1 ]
Jones, B. [1 ]
Laity, G. R. [1 ]
Martin, M. R. [1 ]
Peterson, K. J. [1 ]
Porter, J. L. [1 ]
Rambo, P. K. [1 ]
Rochau, G. A. [1 ]
Ruiz, C. L. [1 ]
Savage, M. E. [1 ]
Schwarz, J. [1 ]
Schmit, P. F. [1 ]
Shipley, G. [1 ]
Sinars, D. B. [1 ]
Smith, I. C. [1 ]
Vesey, R. A. [1 ]
Weis, M. R. [1 ]
机构
[1] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
关键词
FUEL;
D O I
10.1063/1.5054317
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Magnetized Liner Inertial Fusion concept (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 ( 2010)] is being studied on the Z facility at Sandia National Laboratories. Neutron yields greater than 10 12 have been achieved with a drive current in the range of 17-18 MA and pure deuterium fuel [Gomez et al., Phys. Rev. Lett. 113, 155003 ( 2014)]. We show that 2D simulated yields are about twice the best yields obtained on Z and that a likely cause of this difference is the mix of material into the fuel. Mitigation strategies are presented. Previous numerical studies indicate that much larger yields (10-1000MJ) should be possible with pulsed power machines producing larger drive currents (45-60 MA) than can be produced by the Z machine [ Slutz et al., Phys. Plasmas 23, 022702 ( 2016)]. To test the accuracy of these 2D simulations, we present modifications to MagLIF experiments using the existing Z facility, for which 2D simulations predict a 100-fold enhancement of MagLIF fusion yields and considerable increases in burn temperatures. Experimental verification of these predictions would increase the credibility of predictions at higher drive currents. Published by AIP Publishing.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Lasergate: A windowless gas target for enhanced laser preheat in magnetized liner inertial fusion
    Galloway, B. R.
    Slutz, S. A.
    Kimmel, M. W.
    Rambo, P. K.
    Schwarz, J.
    Geissel, M.
    Harvey-Thompson, A. J.
    Weis, M. R.
    Jennings, C. A.
    Field, E. S.
    Kletecka, D. E.
    Looker, Q.
    Colombo, A. P.
    Edens, A. D.
    Smith, I. C.
    Shores, J. E.
    Speas, C. S.
    Speas, R. J.
    Spann, A. P.
    Sin, J.
    Gautier, S.
    Sauget, V.
    Treadwell, P. A.
    Rochau, G. A.
    Porter, J. L.
    PHYSICS OF PLASMAS, 2021, 28 (11)
  • [42] Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments
    Ryutov, D. D.
    Cuneo, M. E.
    Herrmann, M. C.
    Sinars, D. B.
    Slutz, S. A.
    PHYSICS OF PLASMAS, 2012, 19 (06)
  • [43] Temperature distributions and gradients in laser-heated plasmas relevant to magnetized liner inertial fusion
    Carpenter, K. R.
    Mancini, R. C.
    Harding, E. C.
    Harvey-Thompson, A. J.
    Geissel, M.
    Weis, M. R.
    Hansen, S. B.
    Peterson, K. J.
    Rochau, G. A.
    PHYSICAL REVIEW E, 2020, 102 (02)
  • [44] One-dimensional modeling and simulation of end loss effect in magnetized liner inertial fusion
    Zhao Hai-Long
    Xiao Bo
    Wang Gang-Hua
    Wang Qiang
    Kan Ming-Xian
    Duan Shu-Chao
    Xie Long
    Deng Jian-Jun
    ACTA PHYSICA SINICA, 2021, 70 (06)
  • [45] Deep-learning-enabled Bayesian inference of fuel magnetization in magnetized liner inertial fusion
    Lewis, William E.
    Knapp, Patrick F.
    Slutz, Stephen A.
    Schmit, Paul F.
    Chandler, Gordon A.
    Gomez, Matthew R.
    Harvey-Thompson, Adam J.
    Mangan, Michael A.
    Ampleford, David J.
    Beckwith, Kristian
    PHYSICS OF PLASMAS, 2021, 28 (09)
  • [46] Hall interchange instability as a seed for helical magneto-Rayleigh-Taylor instabilities in magnetized liner inertial fusion Z-Pinches scaled from Z-Machine parameters to a next generation pulsed power facility
    Woolstrum, J. M.
    Ruiz, D. E.
    Hamlin, N. D.
    Beckwith, K.
    Martin, M. R.
    PHYSICS OF PLASMAS, 2023, 30 (07)
  • [47] Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas
    Lynn, Alan G.
    Gilmore, Mark
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (11):
  • [48] Novel beryllium-scintillator, neutron-fluence detector for magnetized liner inertial fusion experiments
    Ruiz, C. L.
    Styron, J. D.
    Fehl, D. L.
    Hahn, K. D.
    McWatters, B.
    Mangan, M. A.
    Cooper, G. W.
    Vaughan, J. D.
    Chandler, G. A.
    Jones, B. M.
    Torres, J. A.
    Stutz, S. A.
    Ampleford, D. J.
    Gomez, M. R.
    Harding, E.
    Harvey-Thompson, A. J.
    Knapp, P. F.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2019, 22 (04):
  • [49] MAGNETIZED FUEL INERTIAL CONFINEMENT FUSION
    KILCREASE, DP
    KIRKPATRICK, RC
    NUCLEAR FUSION, 1988, 28 (08) : 1465 - 1468
  • [50] Laser propagation measurements in long-scale-length underdense plasmas relevant to magnetized liner inertial fusion
    Harvey-Thompson, A. J.
    Sefkow, A. B.
    Wei, M. S.
    Nagayama, T.
    Campbell, E. M.
    Blue, B. E.
    Heeter, R. F.
    Koning, J. M.
    Peterson, K. J.
    Schmitt, A.
    PHYSICAL REVIEW E, 2016, 94 (05)