Enhancing performance of magnetized liner inertial fusion at the Z facility

被引:37
|
作者
Slutz, S. A. [1 ]
Gomez, M. R. [1 ]
Hansen, S. B. [1 ]
Harding, E. C. [1 ]
Hutsel, B. T. [1 ]
Knapp, P. F. [1 ]
Lamppa, D. C. [1 ]
Awe, T. J. [1 ]
Ampleford, D. J. [1 ]
Bliss, D. E. [1 ]
Chandler, G. A. [1 ]
Cuneo, M. E. [1 ]
Geissel, M. [1 ]
Glinsky, M. E. [1 ]
Harvey-Thompson, A. J. [1 ]
Hess, M. H. [1 ]
Jennings, C. A. [1 ]
Jones, B. [1 ]
Laity, G. R. [1 ]
Martin, M. R. [1 ]
Peterson, K. J. [1 ]
Porter, J. L. [1 ]
Rambo, P. K. [1 ]
Rochau, G. A. [1 ]
Ruiz, C. L. [1 ]
Savage, M. E. [1 ]
Schwarz, J. [1 ]
Schmit, P. F. [1 ]
Shipley, G. [1 ]
Sinars, D. B. [1 ]
Smith, I. C. [1 ]
Vesey, R. A. [1 ]
Weis, M. R. [1 ]
机构
[1] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
关键词
FUEL;
D O I
10.1063/1.5054317
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Magnetized Liner Inertial Fusion concept (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 ( 2010)] is being studied on the Z facility at Sandia National Laboratories. Neutron yields greater than 10 12 have been achieved with a drive current in the range of 17-18 MA and pure deuterium fuel [Gomez et al., Phys. Rev. Lett. 113, 155003 ( 2014)]. We show that 2D simulated yields are about twice the best yields obtained on Z and that a likely cause of this difference is the mix of material into the fuel. Mitigation strategies are presented. Previous numerical studies indicate that much larger yields (10-1000MJ) should be possible with pulsed power machines producing larger drive currents (45-60 MA) than can be produced by the Z machine [ Slutz et al., Phys. Plasmas 23, 022702 ( 2016)]. To test the accuracy of these 2D simulations, we present modifications to MagLIF experiments using the existing Z facility, for which 2D simulations predict a 100-fold enhancement of MagLIF fusion yields and considerable increases in burn temperatures. Experimental verification of these predictions would increase the credibility of predictions at higher drive currents. Published by AIP Publishing.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Evolution of Gas Cell Targets for Magnetized Liner Inertial Fusion Experiments at the Sandia National Laboratories PECOS Test Facility
    Paguio, R. R.
    Smith, G. E.
    Taylor, J. L.
    Tomlinson, K.
    Holt, R. R.
    Tatum, W. D.
    Farrell, M. P.
    Betcher, J.
    Harvey-Thompson, A.
    Geissel, M.
    Kellogg, J.
    Peterson, K.
    FUSION SCIENCE AND TECHNOLOGY, 2018, 73 (03) : 414 - 422
  • [32] Estimation of stagnation performance metrics in magnetized liner inertial fusion experiments using Bayesian data assimilation
    Knapp, P. F.
    Glinsky, M. E.
    Schaeuble, M. A.
    Jennings, C. A.
    Evans, M.
    Gunning, J.
    Awe, T. J.
    Chandler, G. A.
    Geissel, M.
    Gomez, M. R.
    Hahn, K. D.
    Hansen, S. B.
    Harding, E. C.
    Harvey-Thompson, A. J.
    Humane, S.
    Klein, B. T.
    Mangan, M.
    Nagayama, T.
    Porwitzky, A. J.
    Ruiz, D. E.
    Schmit, P. F.
    Slutz, S. A.
    Smith, I. C.
    Weis, M. R.
    Yager-Elorriaga, D. A.
    Ampleford, D. J.
    Beckwith, K.
    Mattsson, T. R.
    Peterson, K. J.
    Sinars, D. B.
    PHYSICS OF PLASMAS, 2022, 29 (05)
  • [33] Mining experimental magnetized liner inertial fusion data: Trends in stagnation morphology
    Lewis, William E.
    Yager-Elorriaga, David A.
    Jennings, Christopher A.
    Fein, Jeffrey R.
    Shipley, Gabriel A.
    Porwitzky, Andrew
    Awe, Thomas J.
    Gomez, Matthew R.
    Harding, Eric C.
    Harvey-Thompson, Adam J.
    Knapp, Patrick F.
    Mannion, Owen M.
    Ruiz, Daniel E.
    Schaeuble, Marc-Andre
    Slutz, Stephen A.
    Weis, Matthew R.
    Woolstrum, Jeffrey
    Ampleford, David J.
    Shulenburger, Luke
    PHYSICS OF PLASMAS, 2024, 31 (08)
  • [34] Development of a cryogenically cooled platform for the Magnetized Liner Inertial Fusion (MagLIF) Program
    Awe, T. J.
    Shelton, K. P.
    Sefkow, A. B.
    Lamppa, D. C.
    Baker, J. L.
    Rovang, D. C.
    Robertson, G. K.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2017, 88 (09):
  • [35] Data-driven assessment of magnetic charged particle confinement parameter scaling in magnetized liner inertial fusion experiments on Z
    Lewis, William E. E.
    Mannion, Owen M. M.
    Ruiz, D. E.
    Jennings, Christopher A. A.
    Knapp, Patrick F. F.
    Gomez, Matthew R. R.
    Harvey-Thompson, Adam J. J.
    Weis, Matthew R. R.
    Slutz, Stephen A. A.
    Ampleford, David J. J.
    Beckwith, Kristian
    PHYSICS OF PLASMAS, 2023, 30 (05)
  • [36] The effects of magnetic field topology on secondary neutron spectra in Magnetized Liner Inertial Fusion
    Appelbe, B.
    Pecover, J.
    Chittenden, J.
    HIGH ENERGY DENSITY PHYSICS, 2017, 22 : 27 - 36
  • [37] Laser entrance window transmission and reflection measurements for preheating in magnetized liner inertial fusion
    Davies, J. R.
    Bahr, R. E.
    Barnak, D. H.
    Betti, R.
    Bonino, M. J.
    Campbell, E. M.
    Hansen, E. C.
    Harding, D. R.
    Peebles, J. L.
    Sefkow, A. B.
    Seka, W.
    Chang, P. -Y.
    Geissel, M.
    Harvey-Thompson, A. J.
    PHYSICS OF PLASMAS, 2018, 25 (06)
  • [38] Evolution characteristic of axial magnetic field and Nernst effect in magnetized liner inertial fusion
    Zhao Hai-Long
    Wang Gang-Hua
    Xiao Bo
    Wang Qiang
    Kan Ming-Xian
    Duan Shu-Chao
    Xie Long
    ACTA PHYSICA SINICA, 2021, 70 (13)
  • [39] Transport coefficient sensitivities in a semi-analytic model for magnetized liner inertial fusion
    Lawrence, Y.
    Davies, J. R.
    Mcbride, R. D.
    Sefkow, A. B.
    PHYSICS OF PLASMAS, 2024, 31 (11)
  • [40] Demonstration of improved laser preheat with a cryogenically cooled magnetized liner inertial fusion platform
    Harvey-Thompson, A. J.
    Geissel, M.
    Crabtree, J. A.
    Weis, M. R.
    Gomez, M. R.
    Fein, J. R.
    Lewis, W. E.
    Ampleford, D. J.
    Awe, T. J.
    Chandler, G. A.
    Galloway, B. R.
    Hansen, S. B.
    Hanson, J.
    Harding, E. C.
    Jennings, C. A.
    Kimmel, M.
    Knapp, P. F.
    Mangan, M. A.
    Maurer, A.
    Paguio, R. R.
    Perea, L.
    Peterson, K. J.
    Porter, J. L.
    Rambo, P. K.
    Robertson, G. K.
    Rochau, G. A.
    Ruiz, D. E.
    Shores, J. E.
    Slutz, S. A.
    Smith, G. E.
    Smith, I. C.
    Speas, C. S.
    Yager-Elorriaga, D. A.
    York, A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (05):