Active Control of Electromagnetically Induced Transparency in a Terahertz Metamaterial Array with Graphene for Continuous Resonance Frequency Tuning

被引:101
|
作者
Kindness, Stephen J. [1 ]
Almond, Nikita W. [1 ]
Wei, Binbin [1 ]
Wallis, Robert [1 ]
Michailow, Wladislaw [1 ]
Kamboj, Varun S. [1 ]
Braeuninger-Weimer, Philipp [2 ]
Hofmann, Stephan [2 ]
Beere, Harvey E. [1 ]
Ritchie, David A. [1 ]
Degl'Innocenti, Riccardo [3 ]
机构
[1] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[2] Univ Cambridge, Dept Engn, 9 JJ Thomson Ave, Cambridge CB3 0FA, England
[3] Univ Lancaster, Dept Engn, Lancaster LA1 4YW, England
来源
ADVANCED OPTICAL MATERIALS | 2018年 / 6卷 / 21期
基金
英国工程与自然科学研究理事会;
关键词
electromagnetically induced transparency; graphene; metamaterials; terahertz; PLASMON-INDUCED TRANSPARENCY; TIME-DOMAIN SPECTROSCOPY; SPLIT-RING RESONATORS; METASURFACE; LIGHT; PERFORMANCE; ANTENNAS; ANALOG; LASER; SLOW;
D O I
10.1002/adom.201800570
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Optoelectronic terahertz modulators, operated by actively tuning metamaterial, plasmonic resonator structures, have helped to unlock a myriad of terahertz applications, ranging from spectroscopy and imaging to communications. At the same time, due to the inherently versatile dispersion properties of metamaterials, they offer unique platforms for studying intriguing phenomena such as negative refractive index and slow light. Active resonance frequency tuning of a metamaterial working in the terahertz regime is achieved by integrating metal-coupled resonator arrays with electrically tunable graphene. This metamaterial device exploits coupled plasmonic resonators to exhibit an electromagnetically induced transparency analog, resulting in the splitting of the resonance into coupled hybrid optical modes. By variably dampening one of the resonators using graphene, the coupling condition is electrically modulated and continuous tuning of the metamaterial resonance frequency is achieved. This device, operating at room temperature, can readily be implemented as a fast, optoelectronic, tunable band pass/reject filter with a tuning range of approximate to 100 GHz operating at 1.5 THz. The reconfigurable dispersion properties of this device can also be implemented for modulation of the group delay for slow light applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A Terahertz Electromagnetically Induced Transparency-Like Metamaterial for Biosensing
    Nourinovin, Shohreh
    Alomainy, Akram
    2021 15TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2021,
  • [32] Actively Controllable Terahertz Metal-Graphene Metamaterial Based on Electromagnetically Induced Transparency Effect
    Gao, Liang
    Feng, Chao
    Li, Yongfu
    Chen, Xiaohan
    Wang, Qingpu
    Zhao, Xian
    NANOMATERIALS, 2022, 12 (20)
  • [33] Active control of terahertz electromagnetically induced transparency metasurface using a graphene-metal hybrid structure
    Li Q.
    Liu S.
    Lu G.
    Wang S.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2021, 50 (08):
  • [34] Electric Control of Electromagnetically Induced Transparency-like at Terahertz Frequency
    Chen, Tao
    Ren, Yi
    Ma, Yong
    Hao, Honggang
    Ran, Jia
    2021 46TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), 2021,
  • [35] Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications
    He, Xunjun
    Yao, Yuan
    Yang, Xingyu
    Lu, Guangjun
    Yang, Wenlong
    Yang, Yuqiang
    Wu, Fengmin
    Yu, Zhigang
    Jiang, Jiuxing
    OPTICS COMMUNICATIONS, 2018, 410 : 206 - 210
  • [36] Resonance Bandwidth Controllable Adjustment of Electromagnetically Induced Transparency-like Using Terahertz Metamaterial
    He, Yuanhao
    Wang, Ben-Xin
    Lou, Pengcheng
    Xu, Nianxi
    Wang, Xiaoyi
    Wang, Yanchao
    PLASMONICS, 2020, 15 (06) : 1997 - 2002
  • [37] Active modulation of electromagnetically induced transparency analog in graphene-based microwave metamaterial
    Zhang, Jin
    Li, Zhenfei
    Shao, Linda
    Xiao, Fajun
    Zhu, Weiren
    CARBON, 2021, 183 : 850 - 857
  • [38] Resonance Bandwidth Controllable Adjustment of Electromagnetically Induced Transparency-like Using Terahertz Metamaterial
    Yuanhao He
    Ben-Xin Wang
    Pengcheng Lou
    Nianxi Xu
    Xiaoyi Wang
    Yanchao Wang
    Plasmonics, 2020, 15 : 1997 - 2002
  • [39] Active modulation of electromagnetically induced transparency analog in graphene-based microwave metamaterial
    Zhang, Jin
    Li, Zhenfei
    Shao, Linda
    Xiao, Fajun
    Zhu, Weiren
    Carbon, 2021, 183 : 850 - 857
  • [40] Analog of electromagnetically induced transparency at terahertz frequency based on a bilayer-double-H-metamaterial
    Wang, Yue'e
    Li, Zhi
    Hu, Fangrong
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (02)