Active Control of Electromagnetically Induced Transparency in a Terahertz Metamaterial Array with Graphene for Continuous Resonance Frequency Tuning

被引:101
|
作者
Kindness, Stephen J. [1 ]
Almond, Nikita W. [1 ]
Wei, Binbin [1 ]
Wallis, Robert [1 ]
Michailow, Wladislaw [1 ]
Kamboj, Varun S. [1 ]
Braeuninger-Weimer, Philipp [2 ]
Hofmann, Stephan [2 ]
Beere, Harvey E. [1 ]
Ritchie, David A. [1 ]
Degl'Innocenti, Riccardo [3 ]
机构
[1] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[2] Univ Cambridge, Dept Engn, 9 JJ Thomson Ave, Cambridge CB3 0FA, England
[3] Univ Lancaster, Dept Engn, Lancaster LA1 4YW, England
来源
ADVANCED OPTICAL MATERIALS | 2018年 / 6卷 / 21期
基金
英国工程与自然科学研究理事会;
关键词
electromagnetically induced transparency; graphene; metamaterials; terahertz; PLASMON-INDUCED TRANSPARENCY; TIME-DOMAIN SPECTROSCOPY; SPLIT-RING RESONATORS; METASURFACE; LIGHT; PERFORMANCE; ANTENNAS; ANALOG; LASER; SLOW;
D O I
10.1002/adom.201800570
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Optoelectronic terahertz modulators, operated by actively tuning metamaterial, plasmonic resonator structures, have helped to unlock a myriad of terahertz applications, ranging from spectroscopy and imaging to communications. At the same time, due to the inherently versatile dispersion properties of metamaterials, they offer unique platforms for studying intriguing phenomena such as negative refractive index and slow light. Active resonance frequency tuning of a metamaterial working in the terahertz regime is achieved by integrating metal-coupled resonator arrays with electrically tunable graphene. This metamaterial device exploits coupled plasmonic resonators to exhibit an electromagnetically induced transparency analog, resulting in the splitting of the resonance into coupled hybrid optical modes. By variably dampening one of the resonators using graphene, the coupling condition is electrically modulated and continuous tuning of the metamaterial resonance frequency is achieved. This device, operating at room temperature, can readily be implemented as a fast, optoelectronic, tunable band pass/reject filter with a tuning range of approximate to 100 GHz operating at 1.5 THz. The reconfigurable dispersion properties of this device can also be implemented for modulation of the group delay for slow light applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Dynamically selective control of dual-mode electromagnetically induced transparency in terahertz metal-graphene metamaterial
    Zhang, Kun
    Liu, Yan
    Wu, Hongwei
    Xia, Feng
    Kong, Weijin
    OSA CONTINUUM, 2020, 3 (03) : 505 - 514
  • [22] Terahertz Metamaterial Sensor Based on Electromagnetically Induced Transparency Effect
    ShaoXian Li
    HongWei Zhao
    JiaGuang Han
    Journal of Electronic Science and Technology, 2015, 13 (02) : 117 - 121
  • [23] Tunable electromagnetically induced transparency from a superconducting terahertz metamaterial
    Zhang, Caihong
    Wu, Jingbo
    Jin, Biaobing
    Jia, Xiaoqing
    Kang, Lin
    Xu, Weiwei
    Wang, Huabing
    Chen, Jian
    Tonouchi, Masoyoshi
    Wu, Peiheng
    APPLIED PHYSICS LETTERS, 2017, 110 (24)
  • [24] Dynamically tunable electromagnetically induced transparency in a terahertz hybrid metamaterial
    Liu, Tingting
    Wang, Huaixing
    Liu, Yong
    Xiao, Longsheng
    Zhou, Chaobiao
    Xu, Chen
    Xiao, Shuyuan
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 104 : 229 - 232
  • [25] Terahertz Metamaterial Sensor Based on Electromagnetically Induced Transparency Effect
    Shao-Xian Li
    Hong-Wei Zhao
    Jia-Guang Han
    Journal of Electronic Science and Technology, 2015, (02) : 117 - 121
  • [26] An actively tunable multifrequency electromagnetically induced transparency in a terahertz metamaterial
    Li, Haiming
    Xu, Zhipeng
    Wang, Hongyang
    Chen, Jianping
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (03)
  • [27] Terahertz metamaterial sensor based on electromagnetically induced transparency effect
    Li, Shao-Xian
    Zhao, Hong-Wei
    Han, Jia-Guang
    Journal of Electronic Science and Technology, 2015, 13 (02) : 117 - 121
  • [28] Dynamically tunable electromagnetically induced transparency analogy in terahertz metamaterial
    Liu, Chenxi
    Liu, Peiguo
    Bian, Lian
    Zhou, Qihui
    Li, Gaosheng
    Liu, Hanqin
    OPTICS COMMUNICATIONS, 2018, 410 : 17 - 24
  • [29] An actively tunable multifrequency electromagnetically induced transparency in a terahertz metamaterial
    Haiming Li
    Zhipeng Xu
    Hongyang Wang
    Jianping Chen
    Optical and Quantum Electronics, 2023, 55
  • [30] Active control of photo-induced electromagnetically induced transparency in terahertz region
    Li, Dan
    Wang, Hu
    OPTIK, 2019, 185 : 97 - 103