Covariant Hamiltonian field theory

被引:48
|
作者
Struckmeier, Juergen [1 ,2 ]
Redelbach, Andreas
机构
[1] GSI Darmstadt, D-64291 Darmstadt, Germany
[2] Univ Frankfurt, D-60438 Frankfurt, Germany
关键词
field theory; Hamiltonian density; covariant;
D O I
10.1142/S0218301308009458
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A consistent, local coordinate formulation of covariant Hamiltonian field theory is presented. Whereas the covariant canonical field equations are equivalent to the Euler-Lagrange field equations, the covariant canonical transformation theory offers more general means for defining mappings that preserve the form of the field equations than the usual Lagrangian description. It is proven that Poisson brackets, Lagrange brackets, and canonical 2-forms exist that are invariant under canonical transformations of the fields. The technique to derive transformation rules for the fields from generating functions is demonstrated by means of various examples. In particular, it is shown that the infinitesimal canonical transformation furnishes the most general form of Noether's theorem. Furthermore, we specify the generating function of an infinitesimal space-time step that conforms to the field equations.
引用
收藏
页码:435 / 491
页数:57
相关论文
共 50 条
  • [41] RENORMALIZATION OF A COVARIANT APPROXIMATION SCHEME IN FIELD THEORY
    ARNOWITT, R
    GASIOROWICZ, S
    PHYSICAL REVIEW, 1955, 97 (03): : 823 - 830
  • [42] New covariant gauges in string field theory
    Asano, Masako
    Kato, Mitsuhiro
    PROGRESS OF THEORETICAL PHYSICS, 2007, 117 (03): : 569 - 587
  • [43] Covariant Poisson Brackets in Geometric Field Theory
    Michael Forger
    Sandro Vieira Romero
    Communications in Mathematical Physics, 2005, 256 : 375 - 410
  • [44] Covariant and local field theory on the world sheet
    Korkut Bardakci
    Journal of High Energy Physics, 2012
  • [45] Supergeometry in Locally Covariant Quantum Field Theory
    Thomas-Paul Hack
    Florian Hanisch
    Alexander Schenkel
    Communications in Mathematical Physics, 2016, 342 : 615 - 673
  • [46] Dissipative Scalar Field Theory: A Covariant Formulation
    Refaei, A.
    Kheirandish, F.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (01) : 432 - 439
  • [47] On covariant Poisson brackets in classical field theory
    Forger, Michael
    Salles, Mario O.
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (10)
  • [48] Spin and statistics in Galilean covariant field theory
    Hagen, CR
    PHYSICAL REVIEW A, 2004, 70 (01): : 012101 - 1
  • [49] COVARIANT LAGRANGIAN OF SPINOR FIELD IN GEIZENBERGS THEORY
    SEVRYUK, VP
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1973, (11): : 159 - 159
  • [50] GAUGE FIELD-THEORY OF COVARIANT STRINGS
    KAKU, M
    NUCLEAR PHYSICS B, 1986, 267 (01) : 125 - 142