Covariant Hamiltonian field theory

被引:48
|
作者
Struckmeier, Juergen [1 ,2 ]
Redelbach, Andreas
机构
[1] GSI Darmstadt, D-64291 Darmstadt, Germany
[2] Univ Frankfurt, D-60438 Frankfurt, Germany
关键词
field theory; Hamiltonian density; covariant;
D O I
10.1142/S0218301308009458
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A consistent, local coordinate formulation of covariant Hamiltonian field theory is presented. Whereas the covariant canonical field equations are equivalent to the Euler-Lagrange field equations, the covariant canonical transformation theory offers more general means for defining mappings that preserve the form of the field equations than the usual Lagrangian description. It is proven that Poisson brackets, Lagrange brackets, and canonical 2-forms exist that are invariant under canonical transformations of the fields. The technique to derive transformation rules for the fields from generating functions is demonstrated by means of various examples. In particular, it is shown that the infinitesimal canonical transformation furnishes the most general form of Noether's theorem. Furthermore, we specify the generating function of an infinitesimal space-time step that conforms to the field equations.
引用
收藏
页码:435 / 491
页数:57
相关论文
共 50 条
  • [21] COVARIANT STRING FIELD-THEORY
    HATA, H
    ITOH, K
    KUGO, T
    KUNITOMO, H
    OGAWA, K
    PHYSICAL REVIEW D, 1986, 34 (08): : 2360 - 2429
  • [22] Covariant quantum field theory of tachyons
    Paczos, Jerzy
    Debski, Kacper
    Cedrowski, Szymon
    Charzynski, Szymon
    Turzynski, Krzysztof
    Ekert, Artur
    Dragan, Andrzej
    PHYSICAL REVIEW D, 2024, 110 (01)
  • [23] COVARIANT THEORY OF AN UNIFIED VECTOR FIELD
    SEVRYUK, VP
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1974, (07): : 131 - 132
  • [24] Histories and observables in covariant field theory
    Paugam, Frederic
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (09) : 1675 - 1702
  • [25] COVARIANT PONDEROMOTIVE HAMILTONIAN
    ACHTERBERG, A
    JOURNAL OF PLASMA PHYSICS, 1986, 35 : 257 - 266
  • [26] Covariant hamiltonian dynamics
    van Holten, J. W.
    PHYSICAL REVIEW D, 2007, 75 (02):
  • [27] Hamiltonian approach to GR - Part 1: covariant theory of classical gravity
    Cremaschini, Claudio
    Tessarotto, Massimo
    EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (05):
  • [28] Hamiltonian of Galileon field theory
    Sivanesan, Vishagan
    PHYSICAL REVIEW D, 2012, 85 (08):
  • [29] Hamiltonian field theory of ferrohydrodynamics
    Felderhof, B. U.
    Sokolov, V. V.
    Eminov, P. A.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (14):
  • [30] Hamiltonian approach to GR – Part 2: covariant theory of quantum gravity
    Claudio Cremaschini
    Massimo Tessarotto
    The European Physical Journal C, 2017, 77