Machine learning techniques for protein secondary structure prediction: An overview and evaluation

被引:27
|
作者
Yoo, Paul D. [1 ]
Zhou, Bing Bing [1 ]
Zomaya, Albert Y. [2 ,3 ]
机构
[1] Univ Sydney, Adv Networks Res Grp, Sch Informat Technol J12, Sydney, NSW 2006, Australia
[2] Univ Sydney, Sydney Bioinformat Ctr, Sydney, NSW 2006, Australia
[3] Univ Sydney, Ctr Math Biol, Sydney, NSW 2006, Australia
关键词
amino acids encoding; evolutionary information; long-range dependencies; machine learning; protein secondary structure;
D O I
10.2174/157489308784340676
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The prediction of protein secondary structures is not only of great importance for many biological applications but also regarded as an important stepping stone for solving the mystery of how amino acid sequences fold into tertiary structures. Recent research on secondary structure prediction is mainly based on widely known machine learning techniques, such as Artificial Neural Networks and Support Vector Machines. The most significant breakthroughs were the incorporation of new biological information into an efficient prediction model and the development of new models which can efficiently exploit suitable information from its primary sequence. Hence this paper reviews the theoretical and experimental literature of these models with a focus on informational issues involving evolutionary and long-range information of protein sequences. Furthermore, we investigate several key issues in protein data processing which involve dimensionality reduction and encoding schemes.
引用
收藏
页码:74 / 86
页数:13
相关论文
共 50 条
  • [31] Voting for the Prediction of Protein Secondary Structure and Its Evaluation
    Dong, Ying-Song
    He, Zhi-Song
    Qian, Zi-Liang
    Cai, Yu-Dong
    OPTIMIZATION AND SYSTEMS BIOLOGY, 2009, 11 : 17 - +
  • [32] Ensemble learning model for Protein-Protein interaction prediction with multiple Machine learning techniques
    Lai, Zhenghui
    Li, Mengshan
    Chen, Qianyong
    Gu, Yunlong
    Wang, Nan
    Guan, Lixin
    MEASUREMENT, 2025, 242
  • [33] Sequence/structure similarity and support vector machine for protein secondary structure prediction
    Lin, JH
    Tsai, CL
    Lin, MR
    8TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XIII, PROCEEDINGS: INDUSTRIAL SYSTEMS, 2004, : 71 - 76
  • [34] An evolutionary method for learning HMM structure: prediction of protein secondary structure
    Kyoung-Jae Won
    Thomas Hamelryck
    Adam Prügel-Bennett
    Anders Krogh
    BMC Bioinformatics, 8
  • [35] An evolutionary method for learning HMM structure: prediction of protein secondary structure
    Won, Kyoung-Jae
    Hamelryck, Thomas
    Pruegel-Bennett, Adam
    Krogh, Anders
    BMC BIOINFORMATICS, 2007, 8 (1)
  • [36] A Multi-stage Protein Secondary Structure Prediction System Using Machine Learning and Information Theory
    Zamani, Masood
    Kremer, Stefan C.
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, : 1304 - 1309
  • [37] Protein secondary structure prediction by using deep learning method
    Wang, Yangxu
    Mao, Hua
    Yi, Zhang
    KNOWLEDGE-BASED SYSTEMS, 2017, 118 : 115 - 123
  • [38] Deep metric learning for accurate protein secondary structure prediction
    Yang, Wei
    Liu, Yang
    Xiao, Chunjing
    KNOWLEDGE-BASED SYSTEMS, 2022, 242
  • [39] Protein Secondary Structure Prediction With a Reductive Deep Learning Method
    Lyu, Zhiliang
    Wang, Zhijin
    Luo, Fangfang
    Shuai, Jianwei
    Huang, Yandong
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [40] A protein secondary structure prediction framework based on the Support Vector Machine
    Yang, XC
    Wang, B
    Ng, YK
    Yu, G
    Wang, GR
    ADVANCES IN WEB-AGE INFORMATION MANAGEMENT, PROCEEDINGS, 2003, 2762 : 266 - 277