Improved estimation of the degree of freedom parameter of multivariate t-distribution

被引:0
|
作者
Pascal, Frederic [1 ]
Ollila, Esa [2 ]
Palomar, Daniel P. [3 ]
机构
[1] Univ Paris Saclay, CNRS, Cent Supelec, Lab Signaux & Syst, F-91190 Gif Sur Yvette, France
[2] Aalto Univ, Dept Signal Proc & Acoust, Helsinki, Finland
[3] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
关键词
Multivariate t-distribution; M-estimators; Mahalanobis distance; LOCATION;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The multivariate t (MVT)-distribution is a widely used statistical model in various application domains, mainly due to its adaptability to heavy-tailed data. However, estimating the degree of freedom (d.o.f) parameter, that controls the shape of the distribution, remains a challenging problem. In this work, we develop a novel methodology and design various algorithms for estimating the d.o.f parameter. More precisely, based on a key relationship between scatter and covariance matrices for the t-distribution, the estimator is derived from the expectation of a particular quadratic form and is proved to converge although the classical independence assumption is not fulfilled. finally, some preliminary simulations show the improvement of the proposed approach with respect to state-of-the-art methods.
引用
收藏
页码:860 / 864
页数:5
相关论文
共 50 条
  • [41] Recursive maximum likelihood estimation with t-distribution noise model
    Sun, Lu
    Ho, Weng Khuen
    Ling, Keck Voon
    Chen, Tengpeng
    Maciejowski, Jan
    AUTOMATICA, 2021, 132 (132)
  • [42] ACCELERATING THE MULTIVARIATE SKEW T PARAMETER ESTIMATION
    Zhou, Rui
    Palomar, Daniel P.
    2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 251 - 255
  • [43] Single degree-of-freedom modal parameter estimation methods
    Phillips, AW
    Allemang, RJ
    PROCEEDINGS OF THE 14TH INTERNATIONAL MODAL ANALYSIS CONFERENCE, VOLS I & II, 1996, 2768 : 253 - 260
  • [44] STUDENTS T-DISTRIBUTION
    HILL, GW
    COMMUNICATIONS OF THE ACM, 1970, 13 (10) : 617 - +
  • [45] Estimation Methods for the Multivariate t Distribution
    Saralees Nadarajah
    Samuel Kotz
    Acta Applicandae Mathematicae, 2008, 102 : 99 - 118
  • [46] Estimation methods for the multivariate t distribution
    Nadarajah, Saralees
    Kotz, Samuel
    ACTA APPLICANDAE MATHEMATICAE, 2008, 102 (01) : 99 - 118
  • [47] PARAMETER ESTIMATION OF MULTIVARIATE SCALED t DISTRIBUTION: AN APPLICATION TO ALL SHARE PRICE INDEX
    Chandrasekara, N. V.
    Mammadov, M. A.
    Tilakaratne, C. D.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2016, 49 (04) : 287 - 303
  • [48] Robust Inference in the Capital Asset Pricing Model Using the Multivariate t-distribution
    Galea, Manuel
    Cademartori, David
    Curci, Roberto
    Molina, Alonso
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2020, 13 (06)
  • [49] On Fractionally-Supervised Classification: Weight Selection and Extension to the Multivariate t-Distribution
    Michael P. B. Gallaugher
    Paul D. McNicholas
    Journal of Classification, 2019, 36 : 232 - 265
  • [50] On Fractionally-Supervised Classification: Weight Selection and Extension to the Multivariate t-Distribution
    Gallaugher, Michael P. B.
    McNicholas, Paul D.
    JOURNAL OF CLASSIFICATION, 2019, 36 (02) : 232 - 265