Recursive maximum likelihood estimation with t-distribution noise model

被引:6
|
作者
Sun, Lu [1 ]
Ho, Weng Khuen [2 ]
Ling, Keck Voon [3 ]
Chen, Tengpeng [4 ]
Maciejowski, Jan [5 ]
机构
[1] Nanyang Technol Univ, Expt Power Grid Ctr, Singapore 627590, Singapore
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[4] Xiamen Univ, Dept Instrumental & Elect Engn, Xiamen 361102, Peoples R China
[5] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
基金
新加坡国家研究基金会;
关键词
Maximum likelihood estimation; Recursive estimation; Influence function; t-distribution noise; DATA RECONCILIATION; ROBUST;
D O I
10.1016/j.automatica.2021.109789
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a recursive t-distribution noise model based maximum likelihood estimation algorithm for discrete-time dynamic state estimation is proposed. The proposed estimator is robust to outliers because the "thick tail"of the t-distribution reduces the effect of large errors in the likelihood function. A computationally efficient recursive algorithm is derived using the influence function. As the t-distribution reduces to the Gaussian distribution when its degree of freedom tends to infinity, the proposed estimator reduces to the Kalman filter. The mean squared error is used to evaluate the performance of the proposed estimator. Compared with the Kalman filter, the proposed estimator is more robust to outliers in the process and measurement noise. Simulations show that for the particle filter to give a better mean squared error, its computational time is two orders of magnitude slower than the proposed estimator. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Maximum Likelihood Estimation of Tobit Factor Analysis for Multivariate t-Distribution
    Zhou, Xingcai
    Tan, Changchun
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (01) : 1 - 16
  • [2] An Alternating Approach of Maximum Likelihood Estimation for Mixture of Multivariate Skew t-Distribution
    Kim, Seung-Gu
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2014, 27 (05) : 819 - 831
  • [3] Maximum likelihood estimation of multinomial probit factor analysis models for multivariate t-distribution
    Jie Jiang
    Xinsheng Liu
    Keming Yu
    [J]. Computational Statistics, 2013, 28 : 1485 - 1500
  • [4] Maximum likelihood estimation of multinomial probit factor analysis models for multivariate t-distribution
    Jiang, Jie
    Liu, Xinsheng
    Yu, Keming
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (04) : 1485 - 1500
  • [5] Robust Power System State Estimation Using t-Distribution Noise Model
    Chen, Tengpeng
    Sun, Lu
    Ling, Keck-Voon
    Ho, Weng Khuen
    [J]. IEEE SYSTEMS JOURNAL, 2020, 14 (01): : 771 - 781
  • [6] Indoor Tracking With the Generalized t-Distribution Noise Model
    Yin, Le
    Liu, Shuo
    Ho, Weng Khuen
    Ling, Keck Voon
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2018, 26 (03) : 915 - 926
  • [7] A Distributed Robust Power System State Estimation Approach Using t-Distribution Noise Model
    Chen, Tengpeng
    Cao, Yuhao
    Sun, Lu
    Qing, Xinlin
    Zhang, Jingrui
    [J]. IEEE SYSTEMS JOURNAL, 2021, 15 (01): : 1066 - 1076
  • [8] A CURIOUS LIKELIHOOD IDENTITY FOR THE MULTIVARIATE T-DISTRIBUTION
    KENT, JT
    TYLER, DE
    VARDI, Y
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1994, 23 (02) : 441 - 453
  • [9] 2-D Impulse Noise Suppression by Recursive Gaussian Maximum Likelihood Estimation
    Chen, Yang
    Yang, Jian
    Shu, Huazhong
    Shi, Luyao
    Wu, Jiasong
    Luo, Limin
    Coatrieux, Jean-Louis
    Toumoulin, Christine
    [J]. PLOS ONE, 2014, 9 (05):
  • [10] MAXIMUM LIKELIHOOD ESTIMATION OF JORGENSONS DISTRIBUTION LAG MODEL
    MADDALA, GS
    RAO, AS
    [J]. ECONOMETRICA, 1971, 39 (04) : 361 - &