Triangular domain extension of algebraic trigonometric B,zier-like basis

被引:5
|
作者
Wei Yong-wei [1 ,2 ]
Shen Wan-qiang [1 ]
Wang Guo-zhao [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[2] Shanghai Maritime Univ, Dept Appl Math, Shanghai 201306, Peoples R China
基金
中国国家自然科学基金;
关键词
CAGD; free form modeling; blended space; basis function; triangular domain; Bernstein basis; C-CURVES; BEZIER CURVES; CONVEXITY; SURFACES;
D O I
10.1007/s11766-011-2672-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In computer aided geometric design (CAGD), B,zier-like bases receive more and more considerations as new modeling tools in recent years. But those existing B,zier-like bases are all defined over the rectangular domain. In this paper, we extend the algebraic trigonometric B,zier-like basis of order 4 to the triangular domain. The new basis functions defined over the triangular domain are proved to fulfill non-negativity, partition of unity, symmetry, boundary representation, linear independence and so on. We also prove some properties of the corresponding B,zier-like surfaces. Finally, some applications of the proposed basis are shown.
引用
收藏
页码:151 / 160
页数:10
相关论文
共 26 条
  • [11] Bézier-like curve and B-spline-like curve of order two
    Yan, Lanlan
    Han, Xuli
    Journal of Information and Computational Science, 2013, 10 (17): : 5483 - 5503
  • [12] 几何连续的Bézier-like曲线的形状调配
    刘华勇
    王焕宝
    李璐
    张大明
    山东大学学报(理学版), 2012, 47 (03) : 51 - 55
  • [13] H Bézier-Like曲线在工程中的应用
    钱江
    唐月红
    数值计算与计算机应用, 2007, (03) : 167 - 178
  • [14] Generalized Bézier-like model and its applications to curve and surface modeling
    Ameer, Moavia
    Abbas, Muhammad
    Shafiq, Madiha
    Nazir, Tahir
    Birhanu, Asnake
    PLOS ONE, 2024, 19 (06):
  • [15] Developable Bézier-like surfaces with multiple shape parameters and its continuity conditions
    Hu, Gang
    Cao, Huanxin
    Zhang, Suxia
    Wei, Guo
    Applied Mathematical Modelling, 2017, 45 : 728 - 747
  • [16] Scattered Data Interpolation Using Cubic Trigonometric Bézier Triangular Patch
    Hashim, Ishak
    Draman, Nur Nabilah Che
    Karim, Samsul Ariffin Abdul
    Yeo, Wee Ping
    Baleanu, Dumitru
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (01): : 221 - 236
  • [17] Data Fitting on Manifolds with Composite Bézier-Like Curves and Blended Cubic Splines
    Pierre-Yves Gousenbourger
    Estelle Massart
    P.-A. Absil
    Journal of Mathematical Imaging and Vision, 2019, 61 : 645 - 671
  • [18] 广义带多参Bézier-like曲面及其拼接条件
    胡钢
    吉晓民
    白晓波
    计算机集成制造系统, 2016, 22 (02) : 501 - 515
  • [19] 基于三角Bézier-like的过渡曲线构造
    刘华勇
    段小娟
    张大明
    李璐
    浙江大学学报(理学版), 2013, 40 (01) : 42 - 46
  • [20] On the evaluation of rational triangular B,zier surfaces and the optimal stability of the basis
    Delgado, Jorge
    Manuel Pena, Juan
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 38 (04) : 701 - 721