Data Fitting on Manifolds with Composite Bézier-Like Curves and Blended Cubic Splines

被引:0
|
作者
Pierre-Yves Gousenbourger
Estelle Massart
P.-A. Absil
机构
[1] Université catholique de Louvain,ICTEAM
[2] Université catholique de Louvain,ICTEAM
关键词
Riemannian manifold; Data fitting; Curve fitting; Interpolation; Smoothing; Blended cubic spline;
D O I
暂无
中图分类号
学科分类号
摘要
We propose several methods that address the problem of fitting a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} curve γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} to time-labeled data points on a manifold. The methods have a parameter, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, to adjust the relative importance of the two goals that the curve should meet: being “straight enough” while fitting the data “closely enough.” The methods are designed for ease of use: they only require to compute Riemannian exponentials and logarithms, they represent the curve by means of a number of tangent vectors that grows linearly with the number of data points, and, once the representation is computed, evaluating γ(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (t)$$\end{document} at any t requires a small number of exponentials and logarithms (independent of the number of data points). Among the proposed methods, the blended cubic spline technique combines the additional properties of interpolating the data when λ→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \rightarrow \infty $$\end{document} and reducing to the well-known cubic smoothing spline when the manifold is Euclidean. The methods are illustrated on synthetic and real data.
引用
收藏
页码:645 / 671
页数:26
相关论文
共 50 条
  • [1] Data Fitting on Manifolds with Composite Bezier-Like Curves and Blended Cubic Splines
    Gousenbourger, Pierre-Yves
    Massart, Estelle
    Absil, P. -A.
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2019, 61 (05) : 645 - 671
  • [2] Construction of Bézier-like Curves with Energy Constraints
    Yongxia HAO
    Hongyang LUO
    Journal of Mathematical Research with Applications, 2024, (04) : 551 - 568
  • [3] Construction of new cubic Bézier-like triangular patches with application in scattered data interpolation
    Samsul Ariffin Abdul Karim
    Azizan Saaban
    Vaclav Skala
    Abdul Ghaffar
    Kottakkaran Sooppy Nisar
    Dumitru Baleanu
    Advances in Difference Equations, 2020
  • [4] Bézier-like曲线的形状调配
    刘华勇
    李璐
    王焕宝
    扬州大学学报(自然科学版), 2012, 15 (01) : 65 - 68
  • [5] Bézier-like curve and B-spline-like curve of order two
    Yan, Lanlan
    Han, Xuli
    Journal of Information and Computational Science, 2013, 10 (17): : 5483 - 5503
  • [6] Compass Construction of Bézier Curves and B-Splines
    Tuğrul Yazar
    Nexus Network Journal, 2021, 23 : 789 - 811
  • [7] Triangular domain extension of algebraic trigonometric B,zier-like basis
    Wei Yong-wei
    Shen Wan-qiang
    Wang Guo-zhao
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2011, 26 (02) : 151 - 160
  • [8] Triangular domain extension of algebraic trigonometric Bézier-like basis
    Yong-wei Wei
    Wan-qiang Shen
    Guo-zhao Wang
    Applied Mathematics-A Journal of Chinese Universities, 2011, 26 : 151 - 160
  • [9] Flexible smoothing with periodic cubic splines and fitting with closed curves
    Spaeth, H.
    Meier, J.
    Computing (Vienna/New York), 1988, 40 (04): : 293 - 300
  • [10] 几何连续的Bézier-like曲线的形状调配
    刘华勇
    王焕宝
    李璐
    张大明
    山东大学学报(理学版), 2012, 47 (03) : 51 - 55