Triangular domain extension of algebraic trigonometric B,zier-like basis

被引:5
|
作者
Wei Yong-wei [1 ,2 ]
Shen Wan-qiang [1 ]
Wang Guo-zhao [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[2] Shanghai Maritime Univ, Dept Appl Math, Shanghai 201306, Peoples R China
基金
中国国家自然科学基金;
关键词
CAGD; free form modeling; blended space; basis function; triangular domain; Bernstein basis; C-CURVES; BEZIER CURVES; CONVEXITY; SURFACES;
D O I
10.1007/s11766-011-2672-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In computer aided geometric design (CAGD), B,zier-like bases receive more and more considerations as new modeling tools in recent years. But those existing B,zier-like bases are all defined over the rectangular domain. In this paper, we extend the algebraic trigonometric B,zier-like basis of order 4 to the triangular domain. The new basis functions defined over the triangular domain are proved to fulfill non-negativity, partition of unity, symmetry, boundary representation, linear independence and so on. We also prove some properties of the corresponding B,zier-like surfaces. Finally, some applications of the proposed basis are shown.
引用
收藏
页码:151 / 160
页数:10
相关论文
共 26 条
  • [1] Triangular domain extension of algebraic trigonometric Bézier-like basis
    Yong-wei Wei
    Wan-qiang Shen
    Guo-zhao Wang
    Applied Mathematics-A Journal of Chinese Universities, 2011, 26 : 151 - 160
  • [2] The triangular domain extension of Bézier-like basis for 5-order trigonometric polynomial space
    Shen, Wanqiang
    Wang, Guozhao
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2010, 22 (07): : 1099 - 1103
  • [4] Triangular domain extension of linear Bernstein-like trigonometric polynomial basis
    Wan-qiang Shen
    Guo-zhao Wang
    Journal of Zhejiang University SCIENCE C, 2010, 11 : 356 - 364
  • [5] Triangular domain extension of linear Bernstein-like trigonometric polynomial basis
    Shen, Wan-qiang
    Wang, Guo-zhao
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2010, 11 (05): : 356 - 364
  • [6] Triangular domain extension of algebraic trigonometricB′ezier-like basis
    WEI Yongwei SHEN Wanqiang WANG GuozhaoDepartment of Mathematics Zhejiang University Hangzhou ChinaDepartment of Applied Mathematics Shanghai Maritime University Shanghai China
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2011, 26 (02) : 151 - 160
  • [8] Construction of new cubic Bézier-like triangular patches with application in scattered data interpolation
    Samsul Ariffin Abdul Karim
    Azizan Saaban
    Vaclav Skala
    Abdul Ghaffar
    Kottakkaran Sooppy Nisar
    Dumitru Baleanu
    Advances in Difference Equations, 2020
  • [9] Bézier-like曲线的形状调配
    刘华勇
    李璐
    王焕宝
    扬州大学学报(自然科学版), 2012, 15 (01) : 65 - 68
  • [10] Construction of Bézier-like Curves with Energy Constraints
    Yongxia HAO
    Hongyang LUO
    Journal of Mathematical Research with Applications, 2024, (04) : 551 - 568