Symplectic Runge-Kutta methods for the Kalman-Bucy filter

被引:4
|
作者
Hu, Guang-Da [1 ]
机构
[1] Univ Sci & Technol Beijing, Informat Engn Sch, Beijing 100083, Peoples R China
关键词
the continuous-time estimation problem; Hamiltonian system; Riccati equation; symplectic group; symplectic Runge-Kutta methods;
D O I
10.1093/imamci/dnm015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, numerical methods for the Kalman-Bucy filter are investigated from the viewpoint of geometry. The differential matrix Riccati equation for the Kalman-Bucy filter is transformed into a linear differential Hamiltonian system. We show that the linear differential Hamiltonian system with two different initial conditions is on symplectic group. The two different initial conditions relate to two different statistical assumptions about the initial state of a linear time-varying dynamical system. Then, symplectic Runge-Kutta methods can be applied to the linear differential Hamiltonian system, which keep the numerical solution on the symplectic group. Numerical examples are given to illustrate the performance of the numerical methods.
引用
收藏
页码:173 / 183
页数:11
相关论文
共 50 条
  • [31] Galerkin variational integrators and modified symplectic Runge-Kutta methods
    Ober-Blobaum, Sina
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (01) : 375 - 406
  • [32] SYMPLECTIC P-STABLE ADDITIVE RUNGE-KUTTA METHODS
    Zanna, Antonella
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2022, 9 (02): : 299 - 328
  • [33] CONSTRUCTION OF HIGH-ORDER SYMPLECTIC RUNGE-KUTTA METHODS
    SUN, G
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1993, 11 (03): : 250 - 260
  • [34] Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems
    Jay, L
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) : 368 - 387
  • [35] Construction of Symplectic Runge-Kutta Methods for Stochastic Hamiltonian Systems
    Wang, Peng
    Hong, Jialin
    Xu, Dongsheng
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 21 (01) : 237 - 270
  • [36] Construction of Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods from Partitioned Runge-Kutta Methods
    Monovasilis, T.
    Kalogiratou, Z.
    Simos, T. E.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2271 - 2285
  • [37] Diagonally Implicit Symplectic Runge-Kutta Methods with Special Properties
    Kalogiratou, Z.
    Monovasilis, Th.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1387 - 1390
  • [38] Application of symplectic partitioned Runge-Kutta methods to Hamiltonian problems
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    ADVANCES IN COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2005, VOLS 4 A & 4 B, 2005, 4A-4B : 417 - 420
  • [39] A family of trigonometrically fitted partitioned Runge-Kutta symplectic methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (01) : 91 - 96
  • [40] Construction of symplectic (partitioned) Runge-Kutta methods with continuous stage
    Tang, Wensheng
    Lang, Guangming
    Luo, Xuqiong
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 286 : 279 - 287