Galerkin variational integrators and modified symplectic Runge-Kutta methods

被引:19
|
作者
Ober-Blobaum, Sina [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Parks Rd, Oxford OX1 3PJ, England
关键词
discrete variational mechanics; variational integrators; symplectic partitioned Runge-Kutta methods; order of convergence; DISCRETE MECHANICS;
D O I
10.1093/imanum/drv062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, the equivalence of Galerkin variational integrators and Runge-Kutta methods is studied. The construction of Galerkin variational integrators relies on the approximation of the action in the variational principle based on a choice of a finite-dimensional function space and a numerical quadrature formula. While a particular class of Galerkin variational integrators is known to be equivalent to symplectic partitioned Runge-Kutta methods (Marsden, J. E. & West, M. (2001) Discrete mechanics and variational integrators. Acta Numer., 10, 357-514; Hairer, E., Lubich, C. & Wanner, G. (2002) Geometric numerical integration. Springer Series in Computational Mathematics, vol. 31. Berlin, Heidelberg, New York: Springer), this is not true for general Galerkin variational integrators. Based on the proof in Hairer et al. (2002, Geometric numerical integration. Springer Series in Computational Mathematics, vol. 31. Berlin, Heidelberg, New York: Springer), we derive modified Runge-Kutta methods which are shown to be equivalent to a new class of Galerkin variational integrators. This new class distinguishes, compared to the one introduced in Marsden & West (2001, Discrete mechanics and variational integrators. Acta Numer., 10, 357-514), only in the dimension of the finite-dimensional function space. We derive conditions under which both classes of variational integrator are identical. This provides a proof of the order of convergence for the newly introduced class of Galerkin variational integrators. The analytically derived results are demonstrated numerically by the Kepler problem.
引用
收藏
页码:375 / 406
页数:32
相关论文
共 50 条
  • [1] Constrained Galerkin variational integrators and modified constrained symplectic Runge-Kutta methods
    Wenger, Theresa
    Ober-Bloebaum, Sina
    Leyendecker, Sigrid
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [2] On Higher Order Variational Integrators And Their Relation To Runge-Kutta Methods
    Ober-Bloebaum, Sina
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [3] SYMPLECTIC PARTITIONED RUNGE-KUTTA METHODS
    SUN, G
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1993, 11 (04) : 365 - 372
  • [4] Efficient symplectic Runge-Kutta methods
    Chan, RPK
    Liu, HY
    Sun, G
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (02) : 908 - 924
  • [5] Variational symplectic diagonally implicit Runge-Kutta methods for isospectral systems
    Clauson Carvalho da Silva
    Christian Lessig
    [J]. BIT Numerical Mathematics, 2022, 62 : 1823 - 1840
  • [6] Variational symplectic diagonally implicit Runge-Kutta methods for isospectral systems
    da Silva, Clauson Carvalho
    Lessig, Christian
    [J]. BIT NUMERICAL MATHEMATICS, 2022, 62 (04) : 1823 - 1840
  • [7] SYMPLECTIC RUNGE-KUTTA METHODS WITH REAL EIGENVALUES
    HAIRER, E
    WANNER, G
    [J]. BIT, 1994, 34 (02): : 310 - 312
  • [8] A new implementation of symplectic Runge-Kutta methods
    Mclachlan, Robert I.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (04): : 1637 - 1649
  • [9] Symplectic properties of multistep Runge-Kutta methods
    Xiao, AG
    Tang, YF
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (10-11) : 1329 - 1338
  • [10] A class of symplectic partitioned Runge-Kutta methods
    Gan, Siqing
    Shang, Zaijiu
    Sun, Geng
    [J]. APPLIED MATHEMATICS LETTERS, 2013, 26 (09) : 968 - 973