Efficient gravitational-wave glitch identification from environmental data through machine learning

被引:33
|
作者
Colgan, Robert E. [1 ,2 ]
Corley, K. Rainer [3 ,4 ]
Lau, Yenson [2 ,5 ]
Bartos, Imre [6 ]
Wright, John N. [2 ,5 ]
Marka, Zsuzsa [4 ]
Marka, Szabolcs [3 ]
机构
[1] Columbia Univ City New York, Dept Comp Sci, 500 West 120th St, New York, NY 10027 USA
[2] Columbia Univ City New York, Data Sci Inst, 550 West 120th St, New York, NY 10027 USA
[3] Columbia Univ City New York, Dept Phys, 538 West 120th St, New York, NY 10027 USA
[4] Columbia Univ City New York, Columbia Astrophys Lab, 538 West 120th St, New York, NY 10027 USA
[5] Columbia Univ City New York, Dept Elect Engn, 500 West 120th St, New York, NY 10027 USA
[6] Univ Florida, Dept Phys, POB 118440, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
SELECTION;
D O I
10.1103/PhysRevD.101.102003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The LIGO observatories detect gravitational waves through monitoring changes in the detectors' length down to below 10(-19) m/root Hz variations-a small fraction of the size of the atoms that make up the detector. To achieve this sensitivity, the detector and its environment need to be closely monitored. Beyond the gravitational-wave data stream, LIGO continuously records hundreds of thousands of channels of environmental and instrumental data in order to monitor for possibly minuscule variations that contribute to the detector noise. A particularly challenging issue is the appearance in the gravitational wave signal of brief, loud noise artifacts called "glitches," which are environmental or instrumental in origin but can mimic true gravitational waves and therefore hinder sensitivity. Currently, they are primarily identified by analysis of the gravitational-wave data stream, and auxiliary data channels often provide corroborating evidence. Here we present a machine learning approach that can identify glitches by considering all environmental and detector data channels, a task that has not previously been pursued due to its scale and the number of degrees of freedom within gravitational-wave detectors. The presented method is capable of reducing the gravitational-wave detector network's false alarm rate and improving the LIGO instruments, consequently enhancing detection confidence.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [41] Classification of gravitational-wave glitches via dictionary learning
    Llorens-Monteagudo, Miquel
    Torres-Forne, Alejandro
    Font, Jose A.
    Marquina, Antonio
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (07)
  • [42] Gravitational-wave parameter inference using Deep Learning
    Alvares, Joao D.
    Font, Jose A.
    Freitas, Felipe F.
    Freitas, Osvaldo G.
    Morais, Antonio P.
    Nunes, Solange
    Onofre, Antonio
    Torres-Forne, Alejandro
    2021 INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2021, : 165 - 170
  • [43] Training strategies for deep learning gravitational-wave searches
    Schaefer, Marlin B.
    Zelenka, Ondrej
    Nitz, Alexander H.
    Ohme, Frank
    Bruegmann, Bernd
    PHYSICAL REVIEW D, 2022, 105 (04)
  • [44] Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box Approach
    Morales, Manuel D.
    Antelis, Javier M.
    Moreno, Claudia
    Nesterov, Alexander I.
    SENSORS, 2021, 21 (09)
  • [45] Towards a unified treatment of gravitational-wave data analysis
    Cornish, Neil J.
    Romano, Joseph D.
    PHYSICAL REVIEW D, 2013, 87 (12):
  • [46] Issues of mismodeling gravitational-wave data for parameter estimation
    Edy, Oliver
    Lundgren, Andrew
    Nuttall, Laura K.
    PHYSICAL REVIEW D, 2021, 103 (12)
  • [47] DATA-ANALYSIS ALGORITHM FOR GRAVITATIONAL-WAVE EXPERIMENTS
    PIZZELLA, G
    LETTERE AL NUOVO CIMENTO, 1976, 15 (14): : 501 - 504
  • [48] Mock data challenge for the Einstein Gravitational-Wave Telescope
    Regimbau, Tania
    Dent, Thomas
    Del Pozzo, Walter
    Giampanis, Stefanos
    Li, Tjonnie G. F.
    Robinson, Craig
    Van den Broeck, Chris
    Meacher, Duncan
    Rodriguez, Carl
    Sathyaprakash, B. S.
    Wojcik, Katarzyna
    PHYSICAL REVIEW D, 2012, 86 (12):
  • [49] Data analysis challenges in transient gravitational-wave astronomy
    Chassande-Mottin, Eric
    5TH INTERNATIONAL WORKSHOP ON ACOUSTIC AND RADIO EEV NEUTRINO DETECTION ACTIVITIES (ARENA 2012), 2013, 1535 : 252 - 259
  • [50] Can environmental effects spoil precision gravitational-wave astrophysics?
    Barausse, Enrico
    Cardoso, Vitor
    Pani, Paolo
    PHYSICAL REVIEW D, 2014, 89 (10):