Efficient gravitational-wave glitch identification from environmental data through machine learning

被引:33
|
作者
Colgan, Robert E. [1 ,2 ]
Corley, K. Rainer [3 ,4 ]
Lau, Yenson [2 ,5 ]
Bartos, Imre [6 ]
Wright, John N. [2 ,5 ]
Marka, Zsuzsa [4 ]
Marka, Szabolcs [3 ]
机构
[1] Columbia Univ City New York, Dept Comp Sci, 500 West 120th St, New York, NY 10027 USA
[2] Columbia Univ City New York, Data Sci Inst, 550 West 120th St, New York, NY 10027 USA
[3] Columbia Univ City New York, Dept Phys, 538 West 120th St, New York, NY 10027 USA
[4] Columbia Univ City New York, Columbia Astrophys Lab, 538 West 120th St, New York, NY 10027 USA
[5] Columbia Univ City New York, Dept Elect Engn, 500 West 120th St, New York, NY 10027 USA
[6] Univ Florida, Dept Phys, POB 118440, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
SELECTION;
D O I
10.1103/PhysRevD.101.102003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The LIGO observatories detect gravitational waves through monitoring changes in the detectors' length down to below 10(-19) m/root Hz variations-a small fraction of the size of the atoms that make up the detector. To achieve this sensitivity, the detector and its environment need to be closely monitored. Beyond the gravitational-wave data stream, LIGO continuously records hundreds of thousands of channels of environmental and instrumental data in order to monitor for possibly minuscule variations that contribute to the detector noise. A particularly challenging issue is the appearance in the gravitational wave signal of brief, loud noise artifacts called "glitches," which are environmental or instrumental in origin but can mimic true gravitational waves and therefore hinder sensitivity. Currently, they are primarily identified by analysis of the gravitational-wave data stream, and auxiliary data channels often provide corroborating evidence. Here we present a machine learning approach that can identify glitches by considering all environmental and detector data channels, a task that has not previously been pursued due to its scale and the number of degrees of freedom within gravitational-wave detectors. The presented method is capable of reducing the gravitational-wave detector network's false alarm rate and improving the LIGO instruments, consequently enhancing detection confidence.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [1] Rapid identification of strongly lensed gravitational-wave events with machine learning
    Goyal, Srashti
    Harikrishnan, D.
    Kapadia, Shasvath J.
    Ajith, Parameswaran
    PHYSICAL REVIEW D, 2021, 104 (12)
  • [2] Discovering features in gravitational-wave data through detector characterization, citizen science and machine learning
    Soni, S.
    Berry, C. P. L.
    Coughlin, S. B.
    Harandi, M.
    Jackson, C. B.
    Crowston, K.
    Osterlund, C.
    Patane, O.
    Katsaggelos, A. K.
    Trouille, L.
    Baranowski, V-G
    Domainko, W. F.
    Kaminski, K.
    Rodriguez, M. A. Lobato
    Marciniak, U.
    Nauta, P.
    Niklasch, G.
    Rote, R. R.
    Teglas, B.
    Unsworth, C.
    Zhang, C.
    CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (19)
  • [3] Data mining and machine learning improve gravitational-wave detector sensitivity
    Vajente, Gabriele
    PHYSICAL REVIEW D, 2022, 105 (10)
  • [4] First machine learning gravitational-wave search mock data challenge
    Schaefer, Marlin B.
    Zelenka, Ondrej
    Nitz, Alexander H.
    Wang, He
    Wu, Shichao
    Guo, Zong-Kuan
    Cao, Zhoujian
    Ren, Zhixiang
    Nousi, Paraskevi
    Stergioulas, Nikolaos
    Iosif, Panagiotis
    Koloniari, Alexandra E.
    Tefas, Anastasios
    Passalis, Nikolaos
    Salemi, Francesco
    Vedovato, Gabriele
    Klimenko, Sergey
    Mishra, Tanmaya
    Bruegmann, Bernd
    Cuoco, Elena
    Huerta, E. A.
    Messenger, Chris
    Ohme, Frank
    PHYSICAL REVIEW D, 2023, 107 (02)
  • [5] Enhancing gravitational-wave science with machine learning
    Cuoco, Elena
    Powell, Jade
    Cavaglia, Marco
    Ackley, Kendall
    Bejger, Michal
    Chatterjee, Chayan
    Coughlin, Michael
    Coughlin, Scott
    Easter, Paul
    Essick, Reed
    Gabbard, Hunter
    Gebhard, Timothy
    Ghosh, Shaon
    Haegel, Leila
    Iess, Alberto
    Keitel, David
    Marka, Zsuzsa
    Marka, Szabolcs
    Morawski, Filip
    Nguyen, Tri
    Ormiston, Rich
    Puerrer, Michael
    Razzano, Massimiliano
    Staats, Kai
    Vajente, Gabriele
    Williams, Daniel
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (01):
  • [6] Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data
    Biswas, Rahul
    Blackburn, Lindy
    Cao, Junwei
    Essick, Reed
    Hodge, Kari Alison
    Katsavounidis, Erotokritos
    Kim, Kyungmin
    Kim, Young-Min
    Le Bigot, Eric-Olivier
    Lee, Chang-Hwan
    Oh, John J.
    Oh, Sang Hoon
    Son, Edwin J.
    Tao, Ye
    Vaulin, Ruslan
    Wang, Xiaoge
    PHYSICAL REVIEW D, 2013, 88 (06)
  • [7] Chirp mass based glitch identification in long-duration gravitational-wave detection
    Bose, Nirban
    Pai, Archana
    Chandra, Koustav
    Gayathri, V
    PHYSICAL REVIEW D, 2020, 102 (08)
  • [8] Utilizing aLIGO glitch classifications to validate gravitational-wave candidates
    Davis, Derek
    White, Laurel, V
    Saulson, Peter R.
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (14)
  • [9] Gaussian processes for glitch-robust gravitational-wave astronomy
    Ashton, Gregory
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 520 (02) : 2983 - 2994
  • [10] Identification of binary neutron star mergers in gravitational-wave data using object-detection machine learning models
    Aveiro, Joao
    Freitas, Felipe F.
    Ferreira, Marcio
    Onofre, Antonio
    Providencia, Constanca
    Goncalves, Goncalo
    Font, Jose A.
    PHYSICAL REVIEW D, 2022, 106 (08)