Discovering features in gravitational-wave data through detector characterization, citizen science and machine learning

被引:42
|
作者
Soni, S. [1 ]
Berry, C. P. L. [2 ,3 ]
Coughlin, S. B. [2 ]
Harandi, M. [4 ]
Jackson, C. B. [5 ]
Crowston, K. [4 ]
Osterlund, C. [4 ]
Patane, O. [6 ]
Katsaggelos, A. K. [7 ]
Trouille, L. [2 ,8 ]
Baranowski, V-G [9 ]
Domainko, W. F. [9 ]
Kaminski, K. [9 ]
Rodriguez, M. A. Lobato [9 ]
Marciniak, U. [9 ]
Nauta, P. [9 ]
Niklasch, G. [9 ]
Rote, R. R. [9 ]
Teglas, B. [9 ]
Unsworth, C. [9 ]
Zhang, C. [9 ]
机构
[1] Louisiana State Univ, Dept Phys, 202 Nicholson Hall, Baton Rouge, LA 70803 USA
[2] Northwestern Univ, Dept Phys & Astron, Ctr Interdisciplinary Explorat & Res Astrophys CI, 1800 Sherman Ave, Evanston, IL 60201 USA
[3] Univ Glasgow, Sch Phys & Astron, SUPA, Kelvin Bldg,Univ Ave, Glasgow G12 8QQ, Lanark, Scotland
[4] Syracuse Univ, Sch Informat Studies, 343 Hinds Hall, Syracuse, NY 13210 USA
[5] Univ Wisconsin, Informat Sch, Helen C White Hall,600 N Pk St, Madison, WI 53706 USA
[6] Calif State Univ Fullerton, Dept Phys, Nicholas & Lee Begovich Ctr Gravitat Wave Phys &, 800 North State Coll Blvd, Fullerton, CA 92831 USA
[7] Northwestern Univ, Elect & Comp Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA
[8] Adler Planetarium, Zooniverse, X South Lake Shore Dr, Chicago, IL 60605 USA
[9] Grav Spy, Evanston, IL USA
基金
美国国家科学基金会; 澳大利亚研究理事会; 英国科学技术设施理事会;
关键词
LIGO; transient noise; machine learning; noise classification; neural network; GALAXY ZOO; LIGHT;
D O I
10.1088/1361-6382/ac1ccb
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The observation of gravitational waves is hindered by the presence of transient noise (glitches). We study data from the third observing run of the Advanced LIGO detectors, and identify new glitch classes: fast scattering/crown and low-frequency blips. Using training sets assembled by monitoring of the state of the detector, and by citizen-science volunteers, we update the Gravity Spy machine-learning algorithm for glitch classification. We find that fast scattering/crown, linked to ground motion at the detector sites, is especially prevalent, and identify two subclasses linked to different types of ground motion. Reclassification of data based on the updated model finds that similar to 27% of all transient noise at LIGO Livingston belongs to the fast scattering class, while similar to 8% belongs to the low-frequency blip class, making them the most frequent and fourth most frequent sources of transient noise at that site. Our results demonstrate both how glitch classification can reveal potential improvements to gravitational-wave detectors, and how, given an appropriate framework, citizen-science volunteers may make discoveries in large data sets.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Data mining and machine learning improve gravitational-wave detector sensitivity
    Vajente, Gabriele
    [J]. PHYSICAL REVIEW D, 2022, 105 (10)
  • [2] GWitchHunters: Machine learning and citizen science to improve the performance of gravitational wave detector
    Razzano, Massimiliano
    Di Renzo, Francesco
    Fidecaro, Francesco
    Hemming, Gary
    Katsanevas, Stavros
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2023, 1048
  • [3] Enhancing gravitational-wave science with machine learning
    Cuoco, Elena
    Powell, Jade
    Cavaglia, Marco
    Ackley, Kendall
    Bejger, Michal
    Chatterjee, Chayan
    Coughlin, Michael
    Coughlin, Scott
    Easter, Paul
    Essick, Reed
    Gabbard, Hunter
    Gebhard, Timothy
    Ghosh, Shaon
    Haegel, Leila
    Iess, Alberto
    Keitel, David
    Marka, Zsuzsa
    Marka, Szabolcs
    Morawski, Filip
    Nguyen, Tri
    Ormiston, Rich
    Puerrer, Michael
    Razzano, Massimiliano
    Staats, Kai
    Vajente, Gabriele
    Williams, Daniel
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (01):
  • [4] Classifying the unknown: Discovering novel gravitational-wave detector glitches using similarity learning
    Coughlin, S.
    Bahaadini, S.
    Rohani, N.
    Zevin, M.
    Patane, O.
    Harandi, M.
    Jackson, C.
    Noroozi, V.
    Allen, S.
    Areeda, J.
    Coughlin, M.
    Ruiz, P.
    Berry, C. P. L.
    Crowston, K.
    Katsaggelos, A. K.
    Lundgren, A.
    Osterlund, C.
    Smith, J. R.
    Trouille, L.
    Kalogera, V.
    [J]. PHYSICAL REVIEW D, 2019, 99 (08)
  • [5] Efficient gravitational-wave glitch identification from environmental data through machine learning
    Colgan, Robert E.
    Corley, K. Rainer
    Lau, Yenson
    Bartos, Imre
    Wright, John N.
    Marka, Zsuzsa
    Marka, Szabolcs
    [J]. PHYSICAL REVIEW D, 2020, 101 (10)
  • [7] The astrophysical science case for a decihertz gravitational-wave detector
    Mandel, Ilya
    Sesana, Alberto
    Vecchio, Alberto
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (05)
  • [8] First machine learning gravitational-wave search mock data challenge
    Schaefer, Marlin B.
    Zelenka, Ondrej
    Nitz, Alexander H.
    Wang, He
    Wu, Shichao
    Guo, Zong-Kuan
    Cao, Zhoujian
    Ren, Zhixiang
    Nousi, Paraskevi
    Stergioulas, Nikolaos
    Iosif, Panagiotis
    Koloniari, Alexandra E.
    Tefas, Anastasios
    Passalis, Nikolaos
    Salemi, Francesco
    Vedovato, Gabriele
    Klimenko, Sergey
    Mishra, Tanmaya
    Bruegmann, Bernd
    Cuoco, Elena
    Huerta, E. A.
    Messenger, Chris
    Ohme, Frank
    [J]. PHYSICAL REVIEW D, 2023, 107 (02)
  • [9] Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data
    Biswas, Rahul
    Blackburn, Lindy
    Cao, Junwei
    Essick, Reed
    Hodge, Kari Alison
    Katsavounidis, Erotokritos
    Kim, Kyungmin
    Kim, Young-Min
    Le Bigot, Eric-Olivier
    Lee, Chang-Hwan
    Oh, John J.
    Oh, Sang Hoon
    Son, Edwin J.
    Tao, Ye
    Vaulin, Ruslan
    Wang, Xiaoge
    [J]. PHYSICAL REVIEW D, 2013, 88 (06)
  • [10] OPTIMIZATION AND DATA-ANALYSIS OF FRASCATI GRAVITATIONAL-WAVE DETECTOR
    BRAMANTI, D
    MAISCHBERGER, K
    PARKINSON, D
    [J]. LETTERE AL NUOVO CIMENTO, 1973, 7 (14): : 665 - 670