Discovering features in gravitational-wave data through detector characterization, citizen science and machine learning

被引:42
|
作者
Soni, S. [1 ]
Berry, C. P. L. [2 ,3 ]
Coughlin, S. B. [2 ]
Harandi, M. [4 ]
Jackson, C. B. [5 ]
Crowston, K. [4 ]
Osterlund, C. [4 ]
Patane, O. [6 ]
Katsaggelos, A. K. [7 ]
Trouille, L. [2 ,8 ]
Baranowski, V-G [9 ]
Domainko, W. F. [9 ]
Kaminski, K. [9 ]
Rodriguez, M. A. Lobato [9 ]
Marciniak, U. [9 ]
Nauta, P. [9 ]
Niklasch, G. [9 ]
Rote, R. R. [9 ]
Teglas, B. [9 ]
Unsworth, C. [9 ]
Zhang, C. [9 ]
机构
[1] Louisiana State Univ, Dept Phys, 202 Nicholson Hall, Baton Rouge, LA 70803 USA
[2] Northwestern Univ, Dept Phys & Astron, Ctr Interdisciplinary Explorat & Res Astrophys CI, 1800 Sherman Ave, Evanston, IL 60201 USA
[3] Univ Glasgow, Sch Phys & Astron, SUPA, Kelvin Bldg,Univ Ave, Glasgow G12 8QQ, Lanark, Scotland
[4] Syracuse Univ, Sch Informat Studies, 343 Hinds Hall, Syracuse, NY 13210 USA
[5] Univ Wisconsin, Informat Sch, Helen C White Hall,600 N Pk St, Madison, WI 53706 USA
[6] Calif State Univ Fullerton, Dept Phys, Nicholas & Lee Begovich Ctr Gravitat Wave Phys &, 800 North State Coll Blvd, Fullerton, CA 92831 USA
[7] Northwestern Univ, Elect & Comp Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA
[8] Adler Planetarium, Zooniverse, X South Lake Shore Dr, Chicago, IL 60605 USA
[9] Grav Spy, Evanston, IL USA
基金
英国科学技术设施理事会; 美国国家科学基金会; 澳大利亚研究理事会;
关键词
LIGO; transient noise; machine learning; noise classification; neural network; GALAXY ZOO; LIGHT;
D O I
10.1088/1361-6382/ac1ccb
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The observation of gravitational waves is hindered by the presence of transient noise (glitches). We study data from the third observing run of the Advanced LIGO detectors, and identify new glitch classes: fast scattering/crown and low-frequency blips. Using training sets assembled by monitoring of the state of the detector, and by citizen-science volunteers, we update the Gravity Spy machine-learning algorithm for glitch classification. We find that fast scattering/crown, linked to ground motion at the detector sites, is especially prevalent, and identify two subclasses linked to different types of ground motion. Reclassification of data based on the updated model finds that similar to 27% of all transient noise at LIGO Livingston belongs to the fast scattering class, while similar to 8% belongs to the low-frequency blip class, making them the most frequent and fourth most frequent sources of transient noise at that site. Our results demonstrate both how glitch classification can reveal potential improvements to gravitational-wave detectors, and how, given an appropriate framework, citizen-science volunteers may make discoveries in large data sets.
引用
下载
收藏
页数:23
相关论文
共 50 条
  • [31] Search for gravitational-wave bursts in LIGO data from the fourth science run
    Abbott, B.
    Abbott, R.
    Adhikari, R.
    Agresti, J.
    Ajith, P.
    Allen, B.
    Amin, R.
    Anderson, S. B.
    Anderson, W. G.
    Arain, M.
    Araya, M.
    Armandula, H.
    Ashley, M.
    Aston, S.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Ballmer, S.
    Bantilan, H.
    Barish, B. C.
    Barker, C.
    Barker, D.
    Barr, B.
    Barriga, P.
    Barton, M. A.
    Bayer, K.
    Belczynski, K.
    Betzwieser, J.
    Beyersdorf, P. T.
    Bhawal, B.
    Bilenko, I. A.
    Billingsley, G.
    Biswas, R.
    Black, E.
    Blackburn, K.
    Blackburn, L.
    Blair, D.
    Bland, B.
    Bogenstahl, J.
    Bogue, L.
    Bork, R.
    Boschi, V.
    Bose, S.
    Brady, P. R.
    Braginsky, V. B.
    Brau, J. E.
    Brinkmann, M.
    Brooks, A.
    Brown, D. A.
    Bullington, A.
    CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (22) : 5343 - 5369
  • [32] CORRELATIONS AMONG GRAVITATIONAL-WAVE AND NEUTRINO DETECTOR DATA DURING SN1987A
    PIZZELLA, G
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1990, 105 (8-9): : 993 - 1007
  • [33] Gravitational wave surrogates through automated machine learning
    Barsotti, Damian
    Cerino, Franco
    Tiglio, Manuel
    Villanueva, Aaron
    CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (08)
  • [34] Generating transient noise artefacts in gravitational-wave detector data with generative adversarial networks
    Powell, Jade
    Sun, Ling
    Gereb, Katinka
    Lasky, Paul D.
    Dollmann, Markus
    CLASSICAL AND QUANTUM GRAVITY, 2023, 40 (03)
  • [35] Towards a data and detector characterization robot for gravitational wave detectors
    Mohanty, SD
    Mukherjee, S
    CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (07) : 1471 - 1476
  • [36] A Double machine learning trend model for citizen science data
    Fink, Daniel
    Johnston, Alison
    Strimas-Mackey, Matt
    Auer, Tom
    Hochachka, Wesley M.
    Ligocki, Shawn
    Jaromczyk, Lauren Oldham
    Robinson, Orin
    Wood, Chris
    Kelling, Steve
    Rodewald, Amanda D.
    METHODS IN ECOLOGY AND EVOLUTION, 2023, 14 (09): : 2435 - 2448
  • [37] Explaining the GWSkyNet-Multi Machine Learning Classifier Predictions for Gravitational-wave Events
    Raza, Nayyer
    Chan, Man Leong
    Haggard, Daryl
    Mahabal, Ashish
    McIver, Jess
    Abbott, Thomas C.
    Buffaz, Eitan
    Vieira, Nicholas
    ASTROPHYSICAL JOURNAL, 2024, 963 (02):
  • [38] Improving the background of gravitational-wave searches for core collapse supernovae: a machine learning approach
    Cavaglia, M.
    Gaudio, S.
    Hansen, T.
    Staats, K.
    Szczepanczyk, M.
    Zanolin, M.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (01):
  • [39] Identification of binary neutron star mergers in gravitational-wave data using object-detection machine learning models
    Aveiro, Joao
    Freitas, Felipe F.
    Ferreira, Marcio
    Onofre, Antonio
    Providencia, Constanca
    Goncalves, Goncalo
    Font, Jose A.
    PHYSICAL REVIEW D, 2022, 106 (08)
  • [40] SN-1987-A - CORRELATIONS BETWEEN THE MARYLAND AND ROME GRAVITATIONAL-WAVE DETECTOR DATA AND THE MONT BLANC AND KAMIOKANDE NEUTRINO DETECTOR DATA
    PALLOTTINO, GV
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-GEOPHYSICS AND SPACE PHYSICS, 1990, 13 (01): : 19 - 33