Moving fronts for complex Ginzburg-Landau equation with Raman term

被引:13
|
作者
Ankiewicz, A [1 ]
Akhmediev, N [1 ]
机构
[1] Australian Natl Univ, Ctr Opt Sci, Canberra, ACT 0200, Australia
来源
PHYSICAL REVIEW E | 1998年 / 58卷 / 05期
关键词
D O I
10.1103/PhysRevE.58.6723
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Moving fronts, or optical shock-type solitons, are discussed for systems with gain and loss under the influence of the Raman effect. We present energy and momentum segment balance equations and establish the exact moving front solutions. We also show here that stationary and moving fronts also exist when we allow for various other nonlinear terms in the modified Ginzburg-Landau equation. [S1063-651X(98)09611-1].
引用
收藏
页码:6723 / 6727
页数:5
相关论文
共 50 条
  • [31] THE GINZBURG-LANDAU EQUATION
    ADOMIAN, G
    MEYERS, RE
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 29 (03) : 3 - 4
  • [32] Complex Ginzburg-Landau equation with nonlocal coupling
    Tanaka, D
    Kuramoto, Y
    PHYSICAL REVIEW E, 2003, 68 (02):
  • [33] Conservation laws of the complex Ginzburg-Landau equation
    Kudryashov, Nikolay A.
    PHYSICS LETTERS A, 2023, 481
  • [34] Optical solitons with complex Ginzburg-Landau equation
    Mirzazadeh, Mohammad
    Ekici, Mehmet
    Sonmezoglu, Abdullah
    Eslami, Mostafa
    Zhou, Qin
    Kara, Abdul H.
    Milovic, Daniela
    Majid, Fayequa B.
    Biswas, Anjan
    Belic, Milivoj
    NONLINEAR DYNAMICS, 2016, 85 (03) : 1979 - 2016
  • [35] Nonequilibrium dynamics in the complex Ginzburg-Landau equation
    Puri, S
    Das, SK
    Cross, MC
    PHYSICAL REVIEW E, 2001, 64 (05):
  • [36] Soliton Solutions of the Complex Ginzburg-Landau Equation
    Rasheed, Faisal Salah Yousif
    Aziz, Zainal Abdul
    MATEMATIKA, 2009, 25 (01) : 39 - 51
  • [37] EXACT SOLUTIONS FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    Qi, Peng
    Wu, Dongsheng
    Gao, Cuiyun
    Shao, Hui
    ICEIS 2011: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL 4, 2011, : 675 - 677
  • [38] Standing waves of the complex Ginzburg-Landau equation
    Cazenave, Thierry
    Dickstein, Flavio
    Weissler, Fred B.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 103 : 26 - 32
  • [39] Bistability in the complex Ginzburg-Landau equation with drift
    Houghton, S. M.
    Tobias, S. M.
    Knobloch, E.
    Proctor, M. R. E.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (02) : 184 - 196
  • [40] Controlling turbulence in the complex Ginzburg-Landau equation
    Battogtokh, D
    Mikhailov, A
    PHYSICA D, 1996, 90 (1-2): : 84 - 95