Moving fronts for complex Ginzburg-Landau equation with Raman term

被引:13
|
作者
Ankiewicz, A [1 ]
Akhmediev, N [1 ]
机构
[1] Australian Natl Univ, Ctr Opt Sci, Canberra, ACT 0200, Australia
来源
PHYSICAL REVIEW E | 1998年 / 58卷 / 05期
关键词
D O I
10.1103/PhysRevE.58.6723
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Moving fronts, or optical shock-type solitons, are discussed for systems with gain and loss under the influence of the Raman effect. We present energy and momentum segment balance equations and establish the exact moving front solutions. We also show here that stationary and moving fronts also exist when we allow for various other nonlinear terms in the modified Ginzburg-Landau equation. [S1063-651X(98)09611-1].
引用
收藏
页码:6723 / 6727
页数:5
相关论文
共 50 条
  • [21] Global attractors for the complex Ginzburg-Landau equation
    Li, Fang
    You, Bo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 415 (01) : 14 - 24
  • [22] DYNAMICS OF VORTICES FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    Miot, Evelyne
    ANALYSIS & PDE, 2009, 2 (02): : 159 - 186
  • [23] Exact solutions to complex Ginzburg-Landau equation
    Liu, Yang
    Chen, Shuangqing
    Wei, Lixin
    Guan, Bing
    PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (02):
  • [24] Target waves in the complex Ginzburg-Landau equation
    Hendrey, M
    Nam, K
    Guzdar, P
    Ott, E
    PHYSICAL REVIEW E, 2000, 62 (06): : 7627 - 7631
  • [25] Soliton turbulence in the complex Ginzburg-Landau equation
    Sakaguchi, Hidetsugu
    PHYSICAL REVIEW E, 2007, 76 (01):
  • [26] Multisoliton solutions of the complex Ginzburg-Landau equation
    Akhmediev, NN
    Ankiewicz, A
    SotoCrespo, JM
    PHYSICAL REVIEW LETTERS, 1997, 79 (21) : 4047 - 4051
  • [27] Boundary effects in the complex Ginzburg-Landau equation
    Eguíluz, VM
    Hernández-García, E
    Piro, O
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (11): : 2209 - 2214
  • [28] Null controllability of the complex Ginzburg-Landau equation
    Rosier, Lionel
    Zhang, Bing-Yu
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (02): : 649 - 673
  • [29] Phase dynamics in the complex Ginzburg-Landau equation
    Melbourne, I
    Schneider, G
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (01) : 22 - 46