Genome-wide characterization of the WRKY gene family in radish (Raphanus sativus L.) reveals its critical functions under different abiotic stresses

被引:44
|
作者
Karanja, Bernard Kinuthia [1 ]
Fan, Lianxue [1 ]
Xu, Liang [1 ]
Wang, Yan [1 ]
Zhu, Xianwen [2 ]
Tang, Mingjia [1 ]
Wang, Ronghua [1 ]
Zhang, Fei [1 ]
Muleke, Everlyne M'mbone [1 ]
Liu, Liwang [1 ]
机构
[1] Nanjing Agr Univ, Natl Key Lab Crop Genet & Germplasm Enhancement, Key Lab Hort Crop Biol & Genet Improvement Eas Ch, Coll Hort, Nanjing 210095, Jiangsu, Peoples R China
[2] North Dakota State Univ, Dept Plant Sci, Fargo, ND 58108 USA
关键词
Raphanus sativus; WRKY transcription factor; Abiotic stress; RT-qPCR; TRANSCRIPTION FACTOR FAMILY; EXPRESSION ANALYSIS; DNA-BINDING; IDENTIFICATION; TOLERANCE; MICRORNAS; GROWTH; ANNOTATION; INSIGHTS; IMMUNITY;
D O I
10.1007/s00299-017-2190-4
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The radish WRKY gene family was genome-widely identified and played critical roles in response to multiple abiotic stresses. The WRKY is among the largest transcription factors (TFs) associated with multiple biological activities for plant survival, including control response mechanisms against abiotic stresses such as heat, salinity, and heavy metals. Radish is an important root vegetable crop and therefore characterization and expression pattern investigation of WRKY transcription factors in radish is imperative. In the present study, 126 putative WRKY genes were retrieved from radish genome database. Protein sequence and annotation scrutiny confirmed that RsWRKY proteins possessed highly conserved domains and zinc finger motif. Based on phylogenetic analysis results, RsWRKYs candidate genes were divided into three groups (Group I, II and III) with the number 31, 74, and 20, respectively. Additionally, gene structure analysis revealed that intron-exon patterns of the WRKY genes are highly conserved in radish. Linkage map analysis indicated that RsWRKY genes were distributed with varying densities over nine linkage groups. Further, RT-qPCR analysis illustrated the significant variation of 36 RsWRKY genes under one or more abiotic stress treatments, implicating that they might be stress-responsive genes. In total, 126 WRKY TFs were identified from the R. sativus genome wherein, 35 of them showed abiotic stress-induced expression patterns. These results provide a genome-wide characterization of RsWRKY TFs and baseline for further functional dissection and molecular evolution investigation, specifically for improving abiotic stress resistances with an ultimate goal of increasing yield and quality of radish.
引用
收藏
页码:1757 / 1773
页数:17
相关论文
共 50 条
  • [31] Genome-Wide Identification, Characterization, and Expression Analysis under Abiotic Stresses of the UBP Gene Family in Rice (Oryza sativa L.)
    Zou, Xiaoxiao
    Li, Yongliang
    Yin, Huangping
    Xu, Jiajin
    Li, Zeqi
    Jiang, Shuai
    Chen, Fenglin
    Li, You
    Xiao, Wenjun
    Liu, Shucan
    Guo, Xinhong
    AGRONOMY-BASEL, 2023, 13 (11):
  • [32] Genome-Wide Characterization of Cucumber (Cucumis sativus L.) GRAS Genes and Their Response to Various Abiotic Stresses
    Li, Caixia
    Dong, Shaoyun
    Liu, Xiaoping
    Bo, Kailiang
    Miao, Han
    Beckles, Diane M.
    Zhang, Shengping
    Gu, Xingfang
    HORTICULTURAE, 2020, 6 (04) : 1 - 18
  • [33] Genome-wide identification of WRKY gene family members in black raspberry and their response to abiotic stresses
    Wu, Yaqiong
    Zhang, Shanshan
    Huang, Xin
    Lyu, Lianfei
    Li, Weilin
    Wu, Wenlong
    SCIENTIA HORTICULTURAE, 2022, 304
  • [34] Genome-wide identification and expression analysis of BZR gene family and associated responses to abiotic stresses in cucumber (Cucumis sativus L.)
    Shilei Luo
    Guobin Zhang
    Zeyu Zhang
    Zilong Wan
    Zeci Liu
    Jian Lv
    Jihua Yu
    BMC Plant Biology, 23
  • [35] Genome-wide identification and expression analysis of BZR gene family and associated responses to abiotic stresses in cucumber (Cucumis sativus L.)
    Luo, Shilei
    Zhang, Guobin
    Zhang, Zeyu
    Wan, Zilong
    Liu, Zeci
    Lv, Jian
    Yu, Jihua
    BMC PLANT BIOLOGY, 2023, 23 (01)
  • [36] Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots
    Xu, Liang
    Wang, Yan
    Zhai, Lulu
    Xu, Yuanyuan
    Wang, Liangju
    Zhu, Xianwen
    Gong, Yiqin
    Yu, Rugang
    Limera, Cecilia
    Liu, Liwang
    JOURNAL OF EXPERIMENTAL BOTANY, 2013, 64 (14) : 4271 - 4287
  • [37] Genome- and Transcriptome-Wide Characterization of bZIP Gene Family Identifies Potential Members Involved in Abiotic Stress Response and Anthocyanin Biosynthesis in Radish (Raphanus sativus L.)
    Fan, Lianxue
    Xu, Liang
    Wang, Yan
    Tang, Mingjia
    Liu, Liwang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (24)
  • [38] Genome-Wide Identification and Functional Characterization of the Cation Proton Antiporter (CPA) Family Related to Salt Stress Response in Radish (Raphanus sativus L.)
    Wang, Yan
    Ying, Jiali
    Zhang, Yang
    Xu, Liang
    Zhang, Wanting
    Ni, Meng
    Zhu, Yuelin
    Liu, Liwang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (21) : 1 - 20
  • [39] Genome-wide identification and expression profiling of MYB transcription factor genes in radish(Raphanus sativus L.)
    Everlyne M'mbone MULEKE
    WANG Yan
    ZHANG Wan-ting
    XU Liang
    YING Jia-li
    Bernard K.KARANJA
    ZHU Xian-wen
    FAN Lian-xue
    Zarwali AHMADZAI
    LIU Li-wang
    Journal of Integrative Agriculture, 2021, 20 (01) : 120 - 131
  • [40] Genome-Wide Identification and Expression Analysis of SnRK Gene Family under Abiotic Stress in Cucumber (Cucumis sativus L.)
    Luo, Yanyan
    Niu, Yuan
    Gao, Rong
    Wang, Chunlei
    Liao, Weibiao
    AGRONOMY-BASEL, 2022, 12 (07):