A Simple Transversely Isotropic Hyperelastic Constitutive Model Suitable for Finite Element Analysis of Fiber Reinforced Elastomers

被引:11
|
作者
Brown, Leslee W. [1 ]
Smith, Lorenzo M. [2 ]
机构
[1] Gates Corp, Rochester Hills, MI 48309 USA
[2] Oakland Univ, Dept Mech Engn, Rochester, MI 48309 USA
关键词
hyperelasticity; elastomers; strain energy functions; transversely isotropic nonlinear materials; rubber; nonlinear finite element analysis; RUBBER;
D O I
10.1115/1.4003517
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A transversely isotropic fiber reinforced elastomer's hyperelasticity is characterized using a series of constitutive tests (uniaxial tension, uniaxial compression, simple shear, and constrained compression test). A suitable transversely isotropic hyperelastic invariant based strain energy function is proposed and methods for determining the material coefficients are shown. This material model is implemented in a finite element analysis by creating a user subroutine for a commercial finite element code and then used to analyze the material tests. A useful set of constitutive material data for multiple modes of deformation is given. The proposed strain energy function fits the experimental data reasonably well over the strain region of interest. Finite element analysis of the material tests reveals further insight into the materials constitutive nature. The proposed strain energy function is suitable for finite element use by the practicing engineer for small to moderate strains. The necessary material coefficients can be determined from a few simple laboratory tests. [DOI: 10.1115/1.4003517]
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [31] An embedded atom hyperelastic constitutive model and multiscale cohesive finite element method
    Minghua He
    Shaofan Li
    Computational Mechanics, 2012, 49 : 337 - 355
  • [32] CONSTITUTIVE MODEL FOR REINFORCED-CONCRETE FINITE-ELEMENT ANALYSIS - CLOSURE
    STEVENS, NJ
    UZUMERI, SM
    COLLINS, MP
    WILL, GT
    ACI STRUCTURAL JOURNAL, 1991, 88 (06) : 747 - 747
  • [33] Finite element implementation of a new model of slight compressibility for transversely isotropic materials
    Pierrat, B.
    Murphy, J. G.
    MacManus, D. B.
    Gilchrist, M. D.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2016, 19 (07) : 745 - 758
  • [34] A Projected Finite Element Update Method for Inverse Identification of Material Constitutive Parameters in transversely Isotropic Laminates
    Siddiqui, M. Z.
    Khan, S. Z.
    Khan, M. A.
    Shahzad, M.
    Khan, K. A.
    Nisar, S.
    Noman, D.
    EXPERIMENTAL MECHANICS, 2017, 57 (05) : 755 - 772
  • [35] A Projected Finite Element Update Method for Inverse Identification of Material Constitutive Parameters in transversely Isotropic Laminates
    M.Z. Siddiqui
    S. Z. Khan
    M. A. Khan
    M. Shahzad
    K. A. Khan
    S. Nisar
    D. Noman
    Experimental Mechanics, 2017, 57 : 755 - 772
  • [36] Finite Element Analysis of Reinforced Concrete Beams with Transversely Prestressed Bars
    Liu, Can
    Wu, Bo
    Xu, Kai Yan
    ADVANCES IN CIVIL ENGINEERING AND ARCHITECTURE INNOVATION, PTS 1-6, 2012, 368-373 : 108 - +
  • [37] Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity
    Rüter, M
    Stein, E
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (5-7) : 519 - 541
  • [38] A plastic-damage constitutive model for the finite element analysis of fibre reinforced concrete
    Mihai, Iulia C.
    Jefferson, Anthony D.
    Lyons, Paul
    ENGINEERING FRACTURE MECHANICS, 2016, 159 : 35 - 62
  • [39] HIA: A Hybrid Integral Approach to model incompressible isotropic hyperelastic materials - Part 2: Finite element analysis
    Nguessong-Nkenfack, A.
    Beda, T.
    Feng, Z. -Q.
    Peyraut, F.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2016, 86 : 146 - 157
  • [40] Accelerated nonlinear finite element method for analysis of isotropic hyperelastic materials nonlinear deformations
    Pei, Xiaohui
    Du, Jingli
    Chen, Guimin
    APPLIED MATHEMATICAL MODELLING, 2023, 120 : 513 - 534