Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity

被引:48
|
作者
Rüter, M [1 ]
Stein, E [1 ]
机构
[1] Univ Hannover, Inst Struct & Computat Mech, IBNM, D-30167 Hannover, Germany
关键词
D O I
10.1016/S0045-7825(99)00286-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we present constitutive models for nearly incompressible, transversely isotropic materials in finite hyperelasticity, particularly for reinforced rubber-like materials, which are of essential engineering interest. The theory is developed using a convected curvilinear coordinate system based on a mixed two-field displacement-pressure energy functional. Furthermore, an a posteriori error estimator without multiplicative constants is derived for non-linear anisotropic problems, which measures the discretization error in the first Piola-Kirchhoff stresses in the L-2-norm by solving local Neumann problems with equilibrated tractions. Illustrative numerical examples demonstrate the anisotropic material behaviour of reinforced materials and the efficiency of using adaptive finite element methods. (C) 2000 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:519 / 541
页数:23
相关论文
共 50 条
  • [1] On some mixed finite element methods for incompressible and nearly incompressible finite elasticity
    Brink, U
    Stein, E
    [J]. COMPUTATIONAL MECHANICS, 1996, 19 (02) : 105 - 119
  • [2] Finite element implementation of incompressible, transversely isotropic hyperelasticity
    Weiss, JA
    Maker, BN
    Govindjee, S
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 135 (1-2) : 107 - 128
  • [3] A remark on finite element schemes for nearly incompressible elasticity
    Boffi, Daniele
    Stenberg, Rolf
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (09) : 2047 - 2055
  • [4] On finite element formulations for nearly incompressible linear elasticity
    Nakshatrala, K. B.
    Masud, A.
    Hjelmstad, K. D.
    [J]. COMPUTATIONAL MECHANICS, 2008, 41 (04) : 547 - 561
  • [5] On finite element formulations for nearly incompressible linear elasticity
    K. B. Nakshatrala
    A. Masud
    K. D. Hjelmstad
    [J]. Computational Mechanics, 2008, 41 : 547 - 561
  • [6] A finite element method for nearly incompressible elasticity problems
    Braess, D
    Ming, P
    [J]. MATHEMATICS OF COMPUTATION, 2005, 74 (249) : 25 - 52
  • [7] A mixed polygonal finite element formulation for nearly-incompressible finite elasticity
    Sauren, Bjorn
    Klarmann, Simon
    Kobbelt, Leif
    Klinkel, Sven
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 403
  • [8] A stabilized mixed finite element method for nearly incompressible elasticity
    Masud, A
    Xia, KM
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2005, 72 (05): : 711 - 720
  • [9] A kinematically stabilized linear tetrahedral finite element for compressible and nearly incompressible finite elasticity
    Scovazzi, Guglielmo
    Zorrilla, Ruben
    Rossi, Riccardo
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 412
  • [10] Theory and finite element implementation of orthotropic and transversely isotropic incompressible hyperelastic membrane
    Abdessalem, Jarraya
    Kallel, Imen Kammoun
    Fakhreddine, Dammak
    [J]. MULTIDISCIPLINE MODELING IN MATERIALS AND STRUCTURES, 2011, 7 (04) : 424 - 439