Prediction of the electronic structure of single-walled GeS nanotubes

被引:1
|
作者
Yu, Deyang [1 ,2 ,6 ]
Ku, Ruiqi [2 ,5 ]
Hu, Yangyang [1 ,3 ]
Wei, Yadong [2 ,5 ]
Zhu, Cuancuan [2 ]
Liu, Zhongli [5 ]
Zhang, Guiling [1 ,3 ]
Li, Weiqi [2 ,4 ,5 ]
Yang, Jianqun [5 ]
Li, Xingji [5 ]
机构
[1] Harbin Univ Sci & Technol, Sch Mat Sci & Chem Engn, Harbin 150080, Peoples R China
[2] Harbin Inst Technol, Sch Phys, Harbin 150001, Peoples R China
[3] Harbin Univ Sci & Technol, Key Lab Green Chem Technol, Coll Heilongjiang Prov, Harbin 150080, Peoples R China
[4] Key Lab Microopt & Photon Technol Heilongjiang Pr, Harbin 150001, Peoples R China
[5] Technol Innovat Ctr Mat & Devices Extreme Envimnm, Harbin 150001, Peoples R China
[6] Harbin Med Univ Canc Hosp, Dept Radiat Phys, Harbin 150081, Peoples R China
基金
中国国家自然科学基金;
关键词
AB-INITIO; OPTICAL-PROPERTIES; CARBON NANOTUBES; STRAIN-RATE; NANORIBBONS; NANOSHEETS; TRANSPORT; MONOLAYER; MOS2; GAS;
D O I
10.1039/d2ra04969d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The structure and electronic properties of puckered GeS nanotubes have been investigated using first-principles density functional theory calculation. Our results show that both the armchair and zigzag GeS nanotubes are semiconductor materials with an adjustable band gap. The band gap increases gradually with increasing the tube diameter, and slowly converges to the monolayer limit. On the application of strain, the GeS nanotubes provide interesting strain-induced band gap variation. When the compressive strain reached 20%, zigzag GeS nanotubes are completely transformed into armchair GeS nanotubes. In addition, the elastic properties of the relatively stable armchair GeS nanotubes have been studied, the Young's modulus of the armchair (11, 11), (13, 13) and (15, 15) nanotubes were calculated to be 227.488 GPa, 211.888 GPa and 213.920 GPa, respectively. Our work confirms that compared with carbon nanotubes, two-dimensional materials with a puckered structure are easier to realize phase transition by stress.
引用
收藏
页码:29291 / 29299
页数:9
相关论文
共 50 条
  • [41] Structural and electronic bistability in ZnS single sheets and single-walled nanotubes
    Krainara, Norawit
    Limtrakul, Jumras
    Illas, Francesc
    Bromley, Stefan T.
    PHYSICAL REVIEW B, 2011, 83 (23)
  • [42] Electronic structure and dielectric behavior of finite-length single-walled carbon nanotubes
    Li, Y
    Lu, D
    Rotkin, SV
    Schulten, K
    Ravaioli, U
    2004 4TH IEEE CONFERENCE ON NANOTECHNOLOGY, 2004, : 273 - 275
  • [43] Local electronic structure of single-walled carbon nanotubes from electrostatic force microscopy
    Heo, JS
    Bockrath, M
    NANO LETTERS, 2005, 5 (05) : 853 - 857
  • [44] Ab initio simulations on the atomic and electronic structure of single-walled BN nanotubes and nanoarches
    Zhukovskii, Yuri F.
    Piskunov, Sergei
    Pugno, Nicola
    Berzina, Baiba
    Trinkler, Laima
    Bellucci, Stefano
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2009, 70 (05) : 796 - 803
  • [45] Electronic structure of single-walled TiO2 and VO2 nanotubes
    Ivanovskaya, VV
    Enyashin, AN
    Ivanovskii, AL
    MENDELEEV COMMUNICATIONS, 2003, (01) : 5 - 7
  • [46] The electronic fine structure of 4-nitrophenyl functionalized single-walled carbon nanotubes
    Chakraborty, Amit K.
    Coleman, Karl S.
    Dhanak, Vinod R.
    NANOTECHNOLOGY, 2009, 20 (15)
  • [47] Energetics and electronic structure of semiconducting single-walled carbon nanotubes adsorbed on metal surfaces
    Takagi, Yoshiteru
    Okada, Susumu
    PHYSICAL REVIEW B, 2011, 84 (03)
  • [48] Electronic structure and charge distribution of potassium iodide intercalated single-walled carbon nanotubes
    Yam, CY
    Ma, CC
    Wang, XJ
    Chen, GH
    APPLIED PHYSICS LETTERS, 2004, 85 (19) : 4484 - 4486
  • [49] Tuning structural and electronic properties of single-walled SiC nanotubes
    Zahra Afshoon
    Tayebeh Movlarooy
    Silicon, 2023, 15 : 4149 - 4158
  • [50] Advances in tailoring the electronic properties of single-walled carbon nanotubes
    Kharlamova, Marianna V.
    PROGRESS IN MATERIALS SCIENCE, 2016, 77 : 125 - 211