Prediction of the electronic structure of single-walled GeS nanotubes

被引:1
|
作者
Yu, Deyang [1 ,2 ,6 ]
Ku, Ruiqi [2 ,5 ]
Hu, Yangyang [1 ,3 ]
Wei, Yadong [2 ,5 ]
Zhu, Cuancuan [2 ]
Liu, Zhongli [5 ]
Zhang, Guiling [1 ,3 ]
Li, Weiqi [2 ,4 ,5 ]
Yang, Jianqun [5 ]
Li, Xingji [5 ]
机构
[1] Harbin Univ Sci & Technol, Sch Mat Sci & Chem Engn, Harbin 150080, Peoples R China
[2] Harbin Inst Technol, Sch Phys, Harbin 150001, Peoples R China
[3] Harbin Univ Sci & Technol, Key Lab Green Chem Technol, Coll Heilongjiang Prov, Harbin 150080, Peoples R China
[4] Key Lab Microopt & Photon Technol Heilongjiang Pr, Harbin 150001, Peoples R China
[5] Technol Innovat Ctr Mat & Devices Extreme Envimnm, Harbin 150001, Peoples R China
[6] Harbin Med Univ Canc Hosp, Dept Radiat Phys, Harbin 150081, Peoples R China
基金
中国国家自然科学基金;
关键词
AB-INITIO; OPTICAL-PROPERTIES; CARBON NANOTUBES; STRAIN-RATE; NANORIBBONS; NANOSHEETS; TRANSPORT; MONOLAYER; MOS2; GAS;
D O I
10.1039/d2ra04969d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The structure and electronic properties of puckered GeS nanotubes have been investigated using first-principles density functional theory calculation. Our results show that both the armchair and zigzag GeS nanotubes are semiconductor materials with an adjustable band gap. The band gap increases gradually with increasing the tube diameter, and slowly converges to the monolayer limit. On the application of strain, the GeS nanotubes provide interesting strain-induced band gap variation. When the compressive strain reached 20%, zigzag GeS nanotubes are completely transformed into armchair GeS nanotubes. In addition, the elastic properties of the relatively stable armchair GeS nanotubes have been studied, the Young's modulus of the armchair (11, 11), (13, 13) and (15, 15) nanotubes were calculated to be 227.488 GPa, 211.888 GPa and 213.920 GPa, respectively. Our work confirms that compared with carbon nanotubes, two-dimensional materials with a puckered structure are easier to realize phase transition by stress.
引用
收藏
页码:29291 / 29299
页数:9
相关论文
共 50 条
  • [31] Study of the electronic structure of single-walled carbon nanotubes filled with cobalt bromide
    M. V. Kharlamova
    A. A. Eliseev
    L. V. Yashina
    D. I. Petukhov
    Chan-Pu Liu
    Chen-Yu Wang
    D. A. Semenenko
    A. I. Belogorokhov
    JETP Letters, 2010, 91 : 196 - 200
  • [32] On the electronic band structure of zigzag-type single-walled carbon nanotubes
    Özsoy, O
    Sünel, N
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (12) : 1495 - 1501
  • [33] Study of the electronic structure of single-walled carbon nanotubes filled with cobalt bromide
    Kharlamova, M. V.
    Eliseev, A. A.
    Yashina, L. V.
    Petukhov, D. I.
    Liu, Chan-Pu
    Wang, Chen-Yu
    Semenenko, D. A.
    Belogorokhov, A. I.
    JETP LETTERS, 2010, 91 (04) : 196 - 200
  • [34] Electronic specific heat of single-walled carbon nanotubes
    Lin, MF
    Shung, KWK
    PHYSICAL REVIEW B, 1996, 54 (04): : 2896 - 2900
  • [35] Study of electronic properties on single-walled carbon nanotubes
    Xue, ZQ
    CHINESE JOURNAL OF ELECTRONICS, 2001, 10 (01): : 12 - 12
  • [36] Electronic properties of radial single-walled carbon nanotubes
    Sato, Y
    Jeyadevan, B
    Hatakeyama, R
    Kasuya, A
    Tohji, K
    CHEMICAL PHYSICS LETTERS, 2004, 385 (3-4) : 323 - 328
  • [37] Electronic properties of single-walled silicon nanotubes compared to carbon nanotubes
    Yang, XB
    Ni, J
    PHYSICAL REVIEW B, 2005, 72 (19)
  • [38] Prediction of elastic properties for single-walled carbon nanotubes
    Natsuki, T
    Tantrakarn, K
    Endo, M
    CARBON, 2004, 42 (01) : 39 - 45
  • [39] First-principles study of electronic structure of double-walled and single-walled carbon nanotubes
    Qin, Chenglong
    Tian, Zean
    Luo, Xiangyan
    Xie, Quan
    Nie, Tao
    Guo, Xiaotian
    CERAMICS INTERNATIONAL, 2021, 47 (02) : 2665 - 2671
  • [40] The electronic structure of a single-walled aluminosilicate nanotube
    Li, Lijuan
    Xia, Yueyuan
    Zhao, Mingwen
    Song, Chen
    Li, Jiling
    Liu, Xiangdong
    NANOTECHNOLOGY, 2008, 19 (17)