Mechanical and electric properties of ultra-high molecular weight polyethylene and carbon black particle blends

被引:27
|
作者
Xu, CY
Agari, Y
Matsuo, M [1 ]
机构
[1] Nara Womens Univ, Fac Human Life & Environm, Dept Text & Apparel Sci, Nara 6308506, Japan
[2] Osaka Municipal Tech Res Inst, Osaka 5368553, Japan
关键词
composite materials; ultra-high-molecular weight polyethylene; carbon black; electric conductivity; thermal stability; drawability;
D O I
10.1295/polymj.30.372
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Composite materials of ultra-high-molecular weight polyethylene (UHMWPE)-carbon black (CB) particles were prepared by gelation/crystallization from solution in order to obtain the composite materials with various electric conductivities. UHMWPE-CB compositions chosen were 1/0.25, 1/0.5, 1/0.75, 1/1, 1/3, 1/5, and 1/9. Electric conductivity increased with increasing CB content and was in the range of 10(-9) to 1 Omega(-1) cm(-1) corresponding to semiconductors. These values were almost independent of temperature up to 175 degrees C indicating thermal stability. Elongation was carried out in a hot oven at 135 degrees C. Drawability was less pronounced as CB content increased. For example, the maximum achievable draw ratio of 1/1 composition (50% CB content) was 70-fold, while that of 1/0.25 (20% CB content), 150-fold. The corresponding Young's modulus and tensile strength for the 1/0.25 blend were 73.6 and 1.31 GPa, respectively, while those for the 1/1 blend were 25.4 and 0.46 GPa, respectively. The materials with CB > 83% could not be elongated in spite of good impact resistance. The electric conductivity for the drawn blends was anisotropic. The values in the stretching direction decreased with increasing draw ratio, while the values in the thickness direction increased slightly.
引用
收藏
页码:372 / 380
页数:9
相关论文
共 50 条
  • [41] Preparation and Characterization of Electrospun Mat of Ultra-high Molecular Weight Polyethylene/High-Density Polyethylene Blends
    Nayak, Prajesh
    Ghosh, Anup K.
    Bhatnagar, Naresh
    FIBERS AND POLYMERS, 2023, 24 (10) : 3421 - 3433
  • [42] Structural analysis of drawing polyethylene blends with ultra-high molecular weight component.
    Matsuba, G
    Ogino, Y
    Fukushima, H
    Kanaya, T
    Nishida, K
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U446 - U446
  • [43] A study of the nanostructure and tensile properties of ultra-high molecular weight polyethylene
    Turell, MB
    Bellare, A
    BIOMATERIALS, 2004, 25 (17) : 3389 - 3398
  • [44] Tribological properties and microstructure evolution of ultra-high molecular weight polyethylene
    Klapperich, C
    Komvopoulos, K
    Pruitt, L
    JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 1999, 121 (02): : 394 - 402
  • [45] Influence of Irradiation on Compressive Properties of Ultra-High Molecular Weight Polyethylene
    Kamiya, Masaru
    Kikugawa, Hisao
    Asaka, Takashi
    Kanda, Masae
    Nishi, Yoshitake
    JOURNAL OF THE JAPAN INSTITUTE OF METALS AND MATERIALS, 2016, 80 (03) : 192 - 196
  • [46] Tribological properties and microstructure evolution of ultra-high molecular weight polyethylene
    Klapperich, C.
    Komvopouolos, K.
    Pruitt, L.
    Journal of Tribology, 1999, 121 (02): : 394 - 402
  • [47] Properties of blends of ultra-high molecular weight polypropylene with various low molecular weight polypropylenes
    Kim, Byeonguk
    Gavande, Vishal
    Jeong, Mingi
    Kim, Yong Hwan
    Lee, Won-Ki
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2023, 762 (01) : 63 - 70
  • [48] Mechanical characterization of ultra-high molecular weight polyethylene-hydroxyapatite nanocomposites
    Crowley, J.
    Chalivendra, V. B.
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2008, 18 (03) : 149 - 160
  • [49] Effect of Borpolymer on Mechanical and Structural Parameters of Ultra-High Molecular Weight Polyethylene
    Danilova, Sakhayana N.
    Dyakonov, Afanasy A.
    Vasilev, Andrey P.
    Okhlopkova, Aitalina A.
    Tuisov, Aleksei G.
    Kychkin, Anatoly K.
    Kychkin, Aisen A.
    NANOMATERIALS, 2021, 11 (12)
  • [50] High-Energy Mechanical Milling of Ultra-High Molecular Weight Polyethylene (UHMWPE)
    Gabriel, Melina C.
    Mendes, Luciana B.
    Carvalho, Benjamim de M.
    Pinheiro, Luis A.
    Capocchi, Jose D. T.
    Kubaski, Evaldo T.
    Cintho, Osvaldo M.
    ADVANCED POWDER TECHNOLOGY VII, 2010, 660-661 : 325 - 328