Mechanical and electric properties of ultra-high molecular weight polyethylene and carbon black particle blends

被引:27
|
作者
Xu, CY
Agari, Y
Matsuo, M [1 ]
机构
[1] Nara Womens Univ, Fac Human Life & Environm, Dept Text & Apparel Sci, Nara 6308506, Japan
[2] Osaka Municipal Tech Res Inst, Osaka 5368553, Japan
关键词
composite materials; ultra-high-molecular weight polyethylene; carbon black; electric conductivity; thermal stability; drawability;
D O I
10.1295/polymj.30.372
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Composite materials of ultra-high-molecular weight polyethylene (UHMWPE)-carbon black (CB) particles were prepared by gelation/crystallization from solution in order to obtain the composite materials with various electric conductivities. UHMWPE-CB compositions chosen were 1/0.25, 1/0.5, 1/0.75, 1/1, 1/3, 1/5, and 1/9. Electric conductivity increased with increasing CB content and was in the range of 10(-9) to 1 Omega(-1) cm(-1) corresponding to semiconductors. These values were almost independent of temperature up to 175 degrees C indicating thermal stability. Elongation was carried out in a hot oven at 135 degrees C. Drawability was less pronounced as CB content increased. For example, the maximum achievable draw ratio of 1/1 composition (50% CB content) was 70-fold, while that of 1/0.25 (20% CB content), 150-fold. The corresponding Young's modulus and tensile strength for the 1/0.25 blend were 73.6 and 1.31 GPa, respectively, while those for the 1/1 blend were 25.4 and 0.46 GPa, respectively. The materials with CB > 83% could not be elongated in spite of good impact resistance. The electric conductivity for the drawn blends was anisotropic. The values in the stretching direction decreased with increasing draw ratio, while the values in the thickness direction increased slightly.
引用
收藏
页码:372 / 380
页数:9
相关论文
共 50 条
  • [31] The effects of strain rate and temperature on the mechanical properties of ultra-high molecular weight polyethylene fiber
    Xiong, J. (jxiong@zist.edu.cn), 1600, Soc. for the Advancement of Material and Process Engineering (36):
  • [32] The effect of ultra-high molecular weight polyethylene fiber on the mechanical properties of acrylic bone cement
    Yang J.-M.
    Huang P.-Y.
    Yang M.-C.
    Journal of Polymer Research, 1997, 4 (1) : 41 - 46
  • [33] An Investigation of Mechanical Properties and Breakdown Strength of Polypropylene/Ultra-High Molecular Weight Polyethylene Nanocomposites
    Ketsamee, Phichet
    Andritsch, Thomas
    Vaughan, Alun
    2022 IEEE CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA (IEEE CEIDP 2022), 2022, : 475 - 478
  • [34] Effect of ultra-high molecular weight polyethylene fiber on the mechanical properties of acrylic bone cement
    Yang, Jen-Ming
    Huang, Pai-Yao
    Yang, Ming-Chien
    Journal of Polymer Research, 1997, 4 (01): : 41 - 46
  • [35] The effects of strain rate and temperature on the mechanical properties of ultra-high molecular weight polyethylene fiber
    Xiong, J
    Mao, QH
    JOURNAL OF ADVANCED MATERIALS, 2004, 36 (04): : 34 - 38
  • [36] Modification of ultra-high molecular weight polyethylene fiber to improve mechanical properties of foamed concrete
    Wu, Yongwei
    Chen, Meizhu
    Chen, Dongyu
    Zhou, Xiangming
    He, Jun
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 450
  • [37] Mechanical properties and microfabrication study of injection molding On ultra-high molecular weight polyethylene polymer
    Kuo, Hsien-Chang
    Jeng, Ming-Chang
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2010, VOL 3, PTS A AND B, 2012, : 1 - 10
  • [38] Preparation and Characterization of Electrospun Mat of Ultra-high Molecular Weight Polyethylene/High-Density Polyethylene Blends
    Prajesh Nayak
    Anup K. Ghosh
    Naresh Bhatnagar
    Fibers and Polymers, 2023, 24 : 3421 - 3433
  • [39] Synthesis and properties of composites of ultra-high molecular weight polyethylene with carbon fibres or fibre monocrystals
    Atanasov, Atanas
    Koleva, Dimitrina
    POLYMERS & POLYMER COMPOSITES, 2006, 14 (04): : 413 - 420
  • [40] Structure and microwave absorbing properties of carbon-filled ultra-high molecular weight polyethylene
    Gulbin, Victor N.
    Tcherdyntsev, Victor V.
    SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS, 2018, 25 (01) : 153 - 157