Distance Integral Complete r-Partite Graphs

被引:4
|
作者
Yang, Ruosong [1 ]
Wang, Ligong [1 ]
机构
[1] Northwestern Polytech Univ, Sch Sci, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Complete r-partite graph; Distance matrix; Distance integral; Graph spectrum; SPECTRAL-RADIUS; LARGEST EIGENVALUE; ENERGY; MATRIX; TREES;
D O I
10.2298/FIL1504739Y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D(G) = (d(ij))(nxn) denote the distance matrix of a connected graph G with order n, where dij is equal to the distance between vertices v(i) and v(j) in G. A graph is called distance integral if all eigenvalues of its distance matrix are integers. In this paper, we investigate distance integral complete r-partite graphs K-p1,K-p2,K-...,K-pr = K-a1.p1,K-a2.p2,K-...,K-a epsilon.ps and give a su ffi cient and necessary condition for K-a1.p1,K-a2.p2,K-...,K-a epsilon.ps to be distance integral, from which we construct infinitely many new classes of distance integral graphs with s = 1, 2, 3, 4. Finally, we propose two basic open problems for further study.
引用
下载
收藏
页码:739 / 749
页数:11
相关论文
共 50 条
  • [41] Determining equitable total chromatic number for infinite classes of complete r-partite graphs
    da Silva, A. G.
    Dantas, S.
    Sasaki, D.
    DISCRETE APPLIED MATHEMATICS, 2021, 296 (296) : 56 - 67
  • [42] Extremal numbers of disjoint triangles in r-partite graphs
    Zhang, Junxue
    DISCRETE MATHEMATICS, 2023, 346 (09)
  • [43] TOTAL CHROMATIC NUMBER OF COMPLETE R-PARTITE GRAPH
    BERMOND, JC
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1974, 9 (DEC): : 279 - 285
  • [44] Factors of r-partite graphs and bounds for the Strong Chromatic Number
    Johansson, Anders
    Johansson, Robert
    Markstrom, Klas
    ARS COMBINATORIA, 2010, 95 : 277 - 287
  • [45] Vertex Decomposable Property of Graphs Whose Complements Are r-Partite
    Saba YASMEEN
    Tongsuo WU
    Journal of Mathematical Research with Applications, 2021, 41 (01) : 14 - 24
  • [46] R-PARTITE SELF-COMPLEMENTARY GRAPHS-DIAMETERS
    GANGOPADHYAY, T
    HEBBARE, SPR
    DISCRETE MATHEMATICS, 1980, 32 (03) : 245 - 255
  • [47] Making Kr+1-free graphs r-partite
    Balogh, Jozsef
    Clemen, Felix Christian
    Lavrov, Mikhail
    Lidicky, Bernard
    Pfender, Florian
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (04): : 609 - 618
  • [48] Integral complete 4-partite graphs
    Hic, Pavel
    Pokorny, Milan
    DISCRETE MATHEMATICS, 2008, 308 (16) : 3704 - 3705
  • [49] COHEN-MACAULAY r-PARTITE GRAPHS WITH MINIMAL CLIQUE COVER
    Madadi, A.
    Zaare-Nahandi, R.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (03): : 609 - 617
  • [50] DECOMPOSITION OF R-PARTITE GRAPHS INTO EDGE-DISJOINT HAMILTON CIRCUITS
    LASKAR, R
    AUERBACH, B
    DISCRETE MATHEMATICS, 1976, 14 (03) : 265 - 268