Distance Integral Complete r-Partite Graphs

被引:4
|
作者
Yang, Ruosong [1 ]
Wang, Ligong [1 ]
机构
[1] Northwestern Polytech Univ, Sch Sci, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Complete r-partite graph; Distance matrix; Distance integral; Graph spectrum; SPECTRAL-RADIUS; LARGEST EIGENVALUE; ENERGY; MATRIX; TREES;
D O I
10.2298/FIL1504739Y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D(G) = (d(ij))(nxn) denote the distance matrix of a connected graph G with order n, where dij is equal to the distance between vertices v(i) and v(j) in G. A graph is called distance integral if all eigenvalues of its distance matrix are integers. In this paper, we investigate distance integral complete r-partite graphs K-p1,K-p2,K-...,K-pr = K-a1.p1,K-a2.p2,K-...,K-a epsilon.ps and give a su ffi cient and necessary condition for K-a1.p1,K-a2.p2,K-...,K-a epsilon.ps to be distance integral, from which we construct infinitely many new classes of distance integral graphs with s = 1, 2, 3, 4. Finally, we propose two basic open problems for further study.
引用
收藏
页码:739 / 749
页数:11
相关论文
共 50 条