Identification of Widely Linear Systems Using Data-Dependent Superimposed Training

被引:2
|
作者
Arriaga-Trejo, Israel A. [1 ]
Orozco-Lugo, Aldo G. [2 ]
Baltazar-Raigosa, Antonio [3 ]
机构
[1] Mexican Natl Council Sci & Technol CONACYT, Catedras CONACYT Program, Mexico City 03940, DF, Mexico
[2] Natl Polytech Inst, Commun Sect, Res Ctr Adv Studies, Mexico City 07000, DF, Mexico
[3] Autonomous Univ Zacatecas, Acad Unit Elect Engn, Zacatecas 98160, Zacatecas, Mexico
关键词
Training; Estimation; Mathematical models; Nonlinear distortion; Finite impulse response filters; Channel estimation; Task analysis; Widely linear systems; estimation; sequences; superimposed training; complementary autocorrelation; CHANNEL ESTIMATION; IMBALANCE ESTIMATION;
D O I
10.1109/LSP.2022.3212959
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this correspondence, we address the identification of widely linear (WL) systems using data-dependent superimposed training (DDST). The analysis shows that the nonlinear nature of WL systems can be exploited to decouple the finite impulse responses of the filters that constitute the system under identification. Unlike the DDST scheme considered for strictly linear systems, for the WL scenario two data-dependent sequences are required to distort the transmitted data and avoid interference with the training sequence during the estimation process. Closed form expressions for sequences with a complete second order characterization (good periodic autocorrelation and zero complementary periodic autocorrelation) are also provided. The performance of the method is compared with other techniques using numerical simulations.
引用
收藏
页码:2133 / 2137
页数:5
相关论文
共 50 条
  • [41] Consistent regression using data-dependent coverings
    Margot, Vincent
    Baudry, Jean-Patrick
    Guilloux, Frederic
    Wintenberger, Olivier
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 1743 - 1782
  • [42] Adversarial Training is a Form of Data-dependent Operator Norm Regularization
    Roth, Kevin
    Kilcher, Yannic
    Hofmann, Thomas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [43] Image coding using data-dependent triangulation
    Rila, L
    Constantinides, AG
    DSP 97: 1997 13TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2: SPECIAL SESSIONS, 1997, : 531 - 534
  • [44] Data-dependent synchronization in partial-response systems
    Patapoutian, A
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (04) : 1494 - 1503
  • [45] Maximizing Peptide Identification Events in Proteomic Workflows Using Data-Dependent Acquisition (DDA)
    Bateman, Nicholas W.
    Goulding, Scott P.
    Shulman, Nicholas J.
    Gadok, Avinash K.
    Szumlinski, Karen K.
    MacCoss, Michael J.
    Wu, Christine C.
    MOLECULAR & CELLULAR PROTEOMICS, 2014, 13 (01) : 329 - 338
  • [46] Image reconstruction using data-dependent triangulation
    Yu, XH
    Morse, BS
    Sederberg, TW
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2001, 21 (03) : 62 - 68
  • [47] Runtime Precomputation of Data-Dependent Parameters in Embedded Systems
    Hammari, Elena
    Kjeldsberg, Per Gunnar
    Catthoor, Francky
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2018, 17 (03)
  • [48] BINARY DIVISION USING A DATA-DEPENDENT ITERATIVE ARRAY
    DEAN, KJ
    ELECTRONICS LETTERS, 1968, 4 (14) : 283 - +
  • [49] Extending FuzzyCLIPS for parallelizing data-dependent fuzzy expert systems
    Wu, Chao-Chin
    Lai, Lien-Fu
    Chang, Yu-Shuo
    JOURNAL OF SUPERCOMPUTING, 2012, 59 (03): : 1379 - 1395
  • [50] Partial-Data Superimposed Training With Data Precoding for OFDM Systems
    Carlos Estrada-Jimenez, Juan
    Fernandez-Getino Garcia, M. Julia
    IEEE TRANSACTIONS ON BROADCASTING, 2019, 65 (02) : 234 - 244