Consistent regression using data-dependent coverings

被引:2
|
作者
Margot, Vincent [1 ]
Baudry, Jean-Patrick [1 ]
Guilloux, Frederic [1 ]
Wintenberger, Olivier [1 ]
机构
[1] Sorbonne Univ, Lab Probabilites Stat & Modelisat, Campus Pierre & Marie Curie,Tour 16-26,1er Etage, F-75005 Paris, France
来源
ELECTRONIC JOURNAL OF STATISTICS | 2021年 / 15卷 / 01期
关键词
Consistency; nonparametric regression; rule-based algorithm; data-dependent covering; interpretable learning; RESIDUAL VARIANCE;
D O I
10.1214/21-EJS1806
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a procedure to generate an estimator of the regression function based on a data-dependent quasi-covering of the feature space. A quasi-partition is generated from the quasi-covering and the estimator predicts the conditional empirical expectation over the cells of the quasi-partition. We provide sufficient conditions to ensure the consistency of the estimator. Each element of the quasi-covering is labeled as significant or insignificant. We avoid the condition of cell shrinkage commonly found in the literature for data-dependent partitioning estimators. This reduces the number of elements in the quasi-covering. An important feature of our estimator is that it is interpretable. The proof of the consistency is based on a control of the convergence rate of the empirical estimation of conditional expectations, which is interesting in itself.
引用
收藏
页码:1743 / 1782
页数:40
相关论文
共 50 条
  • [1] Histogram regression estimation using data-dependent partitions
    Nobel, A
    [J]. ANNALS OF STATISTICS, 1996, 24 (03): : 1084 - 1105
  • [2] Regression on Manifolds Using Data-Dependent Regularization with Applications in Computer Vision
    Shaw, David A.
    Chellappa, Rama
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2013, 6 (06) : 519 - 528
  • [3] AADT prediction using support vector regression with data-dependent parameters
    Castro-Neto, Manoel
    Jeong, Youngseon
    Jeong, Myong K.
    Han, Lee D.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) : 2979 - 2986
  • [4] Regularized modal regression with data-dependent hypothesis spaces
    Wang, Yingjie
    Chen, Hong
    Song, Biqin
    Li, Han
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2019, 17 (06)
  • [5] Data-dependent kn-NN estimators consistent for arbitrary processes
    Kulkarni, SR
    Posner, SE
    Sandilya, S
    [J]. 1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 388 - 388
  • [6] Image compression using data-dependent triangulations
    Lehner, Burkhard
    Umlauf, Georg
    Hamann, Bernd
    [J]. ADVANCES IN VISUAL COMPUTING, PT I, 2007, 4841 : 351 - +
  • [7] Image coding using data-dependent triangulation
    Rila, L
    Constantinides, AG
    [J]. DSP 97: 1997 13TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2: SPECIAL SESSIONS, 1997, : 531 - 534
  • [8] Robust Regression with Data-Dependent Regularization Parameters and Autoregressive Temporal Correlations
    Wang, Na
    Wang, You-Gan
    Hu, Shuwen
    Hu, Zhi-Hua
    Xu, Jing
    Tang, Hongwu
    Jin, Guangqiu
    [J]. ENVIRONMENTAL MODELING & ASSESSMENT, 2018, 23 (06) : 779 - 786
  • [9] Decentralized Kernel Ridge Regression Based on Data-Dependent Random Feature
    Yang, Ruikai
    He, Fan
    He, Mingzhen
    Yang, Jie
    Huang, Xiaolin
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [10] Robust Regression with Data-Dependent Regularization Parameters and Autoregressive Temporal Correlations
    Na Wang
    You-Gan Wang
    Shuwen Hu
    Zhi-Hua Hu
    Jing Xu
    Hongwu Tang
    Guangqiu Jin
    [J]. Environmental Modeling & Assessment, 2018, 23 : 779 - 786