Robust Regression with Data-Dependent Regularization Parameters and Autoregressive Temporal Correlations

被引:10
|
作者
Wang, Na [1 ]
Wang, You-Gan [1 ]
Hu, Shuwen [1 ]
Hu, Zhi-Hua [2 ]
Xu, Jing [3 ]
Tang, Hongwu [3 ]
Jin, Guangqiu [3 ]
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[2] Shanghai Maritime Univ, Logist Res Ctr, Shanghai 201306, Peoples R China
[3] Hohai Univ, State Key Lab Hydrol Water Resource & Hydraul Eng, Nanjing, Jiangsu, Peoples R China
基金
澳大利亚研究理事会;
关键词
Ammonia nitrogen; Regularization; Log-linear model; Model selection; Robust estimation; Temporal correlations; RIVER;
D O I
10.1007/s10666-018-9605-7
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We introduce robust procedures for analyzing water quality data collected over time. One challenging task in analyzing such data is how to achieve robustness in presence of outliers while maintaining high estimation efficiency so that we can draw valid conclusions and provide useful advices in water management. The robust approach requires specification of a loss function such as the Huber, Tukey's bisquare and the exponential loss function, and an associated tuning parameter determining the extent of robustness needed. High robustness is at the cost of efficiency loss in parameter loss. To this end, we propose a data-driven method which leads to more efficient parameter estimation. This data-dependent approach allows us to choose a regularization (tuning) parameter that depends on the proportion of outliers in the data so that estimation efficiency is maximized. We illustrate the proposed methods using a study on ammonium nitrogen concentrations from two sites in the Huaihe River in China, where the interest is in quantifying the trend in the most recent years while accounting for possible temporal correlations and irregular observations in earlier years.
引用
收藏
页码:779 / 786
页数:8
相关论文
共 50 条
  • [1] Robust Regression with Data-Dependent Regularization Parameters and Autoregressive Temporal Correlations
    Na Wang
    You-Gan Wang
    Shuwen Hu
    Zhi-Hua Hu
    Jing Xu
    Hongwu Tang
    Guangqiu Jin
    [J]. Environmental Modeling & Assessment, 2018, 23 : 779 - 786
  • [2] Regression on Manifolds Using Data-Dependent Regularization with Applications in Computer Vision
    Shaw, David A.
    Chellappa, Rama
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2013, 6 (06) : 519 - 528
  • [3] Maximum relative margin and data-dependent regularization
    Shivaswamy, Pannagadatta K.
    Jebara, Tony
    [J]. Journal of Machine Learning Research, 2010, 11 : 747 - 788
  • [4] Maximum Relative Margin and Data-Dependent Regularization
    Shivaswamy, Pannagadatta K.
    Jebara, Tony
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 747 - 788
  • [5] AADT prediction using support vector regression with data-dependent parameters
    Castro-Neto, Manoel
    Jeong, Youngseon
    Jeong, Myong K.
    Han, Lee D.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) : 2979 - 2986
  • [6] Dropout Training, Data-dependent Regularization, and Generalization Bounds
    Mou, Wenlong
    Zhou, Yuchen
    Gao, Jun
    Wang, Liwei
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [7] Consistent regression using data-dependent coverings
    Margot, Vincent
    Baudry, Jean-Patrick
    Guilloux, Frederic
    Wintenberger, Olivier
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 1743 - 1782
  • [8] Adversarial Training is a Form of Data-dependent Operator Norm Regularization
    Roth, Kevin
    Kilcher, Yannic
    Hofmann, Thomas
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [9] Regularized modal regression with data-dependent hypothesis spaces
    Wang, Yingjie
    Chen, Hong
    Song, Biqin
    Li, Han
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2019, 17 (06)
  • [10] Histogram regression estimation using data-dependent partitions
    Nobel, A
    [J]. ANNALS OF STATISTICS, 1996, 24 (03): : 1084 - 1105