Self-folding devices and materials for biomedical applications

被引:226
|
作者
Randall, Christina L. [3 ]
Gultepe, Evin [1 ]
Gracias, David H. [1 ,2 ]
机构
[1] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21205 USA
基金
美国国家卫生研究院;
关键词
MINIMALLY INVASIVE SURGERY; TISSUE ENGINEERING SCAFFOLDS; DRUG-DELIVERY; ACTUATED MICROGRIPPERS; MECHANICAL-PROPERTIES; CELL ENCAPSULATION; IN-VIVO; CONTAINERS; MICROSTRUCTURES; FABRICATION;
D O I
10.1016/j.tibtech.2011.06.013
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Because the native cellular environment is 3D, there is a need to extend planar, micro- and nanostructured biomedical devices to the third dimension. Self-folding methods can extend the precision of planar lithographic patterning into the third dimension and create reconfigurable structures that fold or unfold in response to specific environmental cues. Here, we review the use of hinge-based self-folding methods in the creation of functional 3D biomedical devices including precisely patterned nano- to centimeter scale polyhedral containers, scaffolds for cell culture and reconfigurable surgical tools such as grippers that respond autonomously to specific chemicals.
引用
下载
收藏
页码:138 / 146
页数:9
相关论文
共 50 条
  • [31] Sequential self-folding of polymer sheets
    Liu, Ying
    Shaw, Brandi
    Dickey, Michael D.
    Genzer, Jan
    SCIENCE ADVANCES, 2017, 3 (03):
  • [32] Self-Folding Single Cell Grippers
    Malachowski, Kate
    Jamal, Mustapha
    Jin, Qianru
    Polat, Beril
    Morris, Christopher J.
    Gracias, David H.
    NANO LETTERS, 2014, 14 (07) : 4164 - 4170
  • [33] A flexible self-folding receptor for coronene
    Lozano, David
    Alvarez-Yebra, Ruben
    Lopez-Coll, Ricard
    Lledo, Agusti
    CHEMICAL SCIENCE, 2019, 10 (44) : 10351 - 10355
  • [34] Self-folding CNTs cause a racket
    Palmer, D. Jason
    MATERIALS TODAY, 2007, 10 (04) : 9 - 9
  • [35] Self-Folding and Unfolding of Carbon Nanotubes
    Buehler, MJ
    Kong, Y
    Gao, HJ
    Huang, YG
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2006, 128 (01): : 3 - 10
  • [36] Self-folding thin-film materials: From nanopolyhedra to graphene origami
    Vivek B. Shenoy
    David H. Gracias
    MRS Bulletin, 2012, 37 : 847 - 854
  • [37] Energetic Self-Folding Mechanism in α-Helices
    Bastida, Adolfo
    Zuniga, Jose
    Requena, Alberto
    Cerezo, Javier
    JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (39): : 8186 - 8194
  • [38] Structural studies of self-folding cavitands
    Shivanyuk, A
    Rissanen, K
    Körner, SK
    Rudkevich, DM
    Rebek, J
    HELVETICA CHIMICA ACTA, 2000, 83 (08) : 1778 - 1790
  • [39] Lattice model for self-folding at the microscale
    T. S. A. N. Simões
    H. P. M. Melo
    N. A. M. Araújo
    The European Physical Journal E, 2021, 44
  • [40] Thermorph: Democratizing 4D Printing of Self-Folding Materials and Interfaces
    An, Byoungkwon
    Tao, Ye
    Gu, Jianzhe
    Cheng, Tingyu
    Chen, Xiang 'Anthony'
    Zhang, Xiaoxiao
    Zhao, Wei
    Do, Youngwook
    Takahashi, Shigeo
    Wu, Hsiang-Yun
    Zhang, Teng
    Yao, Lining
    PROCEEDINGS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2018), 2018,