Self-folding devices and materials for biomedical applications

被引:226
|
作者
Randall, Christina L. [3 ]
Gultepe, Evin [1 ]
Gracias, David H. [1 ,2 ]
机构
[1] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21205 USA
基金
美国国家卫生研究院;
关键词
MINIMALLY INVASIVE SURGERY; TISSUE ENGINEERING SCAFFOLDS; DRUG-DELIVERY; ACTUATED MICROGRIPPERS; MECHANICAL-PROPERTIES; CELL ENCAPSULATION; IN-VIVO; CONTAINERS; MICROSTRUCTURES; FABRICATION;
D O I
10.1016/j.tibtech.2011.06.013
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Because the native cellular environment is 3D, there is a need to extend planar, micro- and nanostructured biomedical devices to the third dimension. Self-folding methods can extend the precision of planar lithographic patterning into the third dimension and create reconfigurable structures that fold or unfold in response to specific environmental cues. Here, we review the use of hinge-based self-folding methods in the creation of functional 3D biomedical devices including precisely patterned nano- to centimeter scale polyhedral containers, scaffolds for cell culture and reconfigurable surgical tools such as grippers that respond autonomously to specific chemicals.
引用
下载
收藏
页码:138 / 146
页数:9
相关论文
共 50 条
  • [21] Self-folding cavitands of nanoscale dimensions
    Lücking, U
    Tucci, FC
    Rudkevich, DM
    Rebek, J
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (37) : 8880 - 8889
  • [22] Designing and programming self-folding sheets
    An, Byoungkwon
    Rus, Daniela
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2014, 62 (07) : 976 - 1001
  • [23] Self-Folding Using Capillary Forces
    Kwok, Kam Sang
    Huang, Qi
    Mastrangeli, Massimo
    Gracias, David H.
    ADVANCED MATERIALS INTERFACES, 2020, 7 (05):
  • [24] Self-folding and aggregation of amyloid nanofibrils
    Paparcone, Raffaella
    Cranford, Steven W.
    Buehler, Markus J.
    NANOSCALE, 2011, 3 (04) : 1748 - 1755
  • [25] Self-folding with shape memory composites
    Felton, Samuel M.
    Tolley, Michael T.
    Shin, ByungHyun
    Onal, Cagdas D.
    Demaine, Erik D.
    Rus, Daniela
    Wood, Robert J.
    SOFT MATTER, 2013, 9 (32) : 7688 - 7694
  • [26] Lattice model for self-folding at the microscale
    Simoes, T. S. A. N.
    Melo, H. P. M.
    Araujo, N. A. M.
    EUROPEAN PHYSICAL JOURNAL E, 2021, 44 (04):
  • [27] A method for building self-folding machines
    Felton, S.
    Tolley, M.
    Demaine, E.
    Rus, D.
    Wood, R.
    SCIENCE, 2014, 345 (6197) : 644 - 646
  • [28] Extreme Mechanics: Self-Folding Origami
    Santangelo, Christian D.
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 8, 2017, 8 : 165 - 183
  • [29] Self-Folding Origami Microstrip Antennas
    Hayes, Gerard J.
    Liu, Ying
    Genzer, Jan
    Lazzi, Gianluca
    Dickey, Michael D.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (10) : 5416 - 5419
  • [30] Self-folding micropatterned polymeric containers
    Azam, Anum
    Laflin, Kate E.
    Jamal, Mustapha
    Fernandes, Rohan
    Gracias, David H.
    BIOMEDICAL MICRODEVICES, 2011, 13 (01) : 51 - 58