On entropy conditions of high resolution schemes for scalar conservation laws

被引:0
|
作者
Zhao, N
Wu, HM
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Aerodynam, Nanjing 210016, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100080, Peoples R China
关键词
entropy condition; high resolution schemes; conservation laws;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a kind of quadratic cell entropy inequalities of second order resolution SOR-TVD schemes is obtained for scalar hyperbolic conservation laws with strictly convex (concave) fluxes, which in turn implies the convergence of the schemes to the physically relevent solution of the problem. The theoretical results obtained in this paper improve the main results of Osher and Tadmor [6].
引用
收藏
页码:371 / 384
页数:14
相关论文
共 50 条
  • [21] Central schemes for networked scalar conservation laws
    Herty, Michael
    Kolbe, Niklas
    Mueller, Siegfried
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (01) : 310 - 340
  • [22] HIGH-RESOLUTION SCHEMES FOR HYPERBOLIC CONSERVATION-LAWS
    HARTEN, A
    JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 49 (03) : 357 - 393
  • [23] High-Resolution Schemes for Stochastic Nonlinear Conservation Laws
    Sweilam N.H.
    ElSakout D.M.
    Muttardi M.M.
    International Journal of Applied and Computational Mathematics, 2020, 6 (1)
  • [24] Entropy conservation property and entropy stabilization of high-order continuous Galerkin approximations to scalar conservation laws
    Kuzmin, Dmitri
    de Luna, Manuel Quezada
    COMPUTERS & FLUIDS, 2020, 213
  • [25] On maximum-principle-satisfying high order schemes for scalar conservation laws
    Zhang, Xiangxiong
    Shu, Chi-Wang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (09) : 3091 - 3120
  • [26] ADER-SCHEMES ON NETWORKS OF SCALAR CONSERVATION LAWS
    Borsche, Raul
    Kall, Jochen
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 333 - 340
  • [27] Nonlinear stability of the relaxing schemes for scalar conservation laws
    Tang, HZ
    APPLIED NUMERICAL MATHEMATICS, 2001, 38 (03) : 347 - 359
  • [28] Stability of reconstruction schemes for scalar hyperbolic conservation laws
    Lagoutiere, Frederic
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2008, 6 (01) : 57 - 70
  • [29] Equilibrium schemes for scalar conservation laws with stiff sources
    Botchorishvili, R
    Perthame, B
    Vasseur, A
    MATHEMATICS OF COMPUTATION, 2003, 72 (241) : 131 - 157
  • [30] Second Order Implicit Schemes for Scalar Conservation Laws
    Wagner, Lisa
    Lang, Jens
    Kolb, Oliver
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS (ENUMATH 2015), 2016, 112 : 33 - 41