ADER-SCHEMES ON NETWORKS OF SCALAR CONSERVATION LAWS

被引:0
|
作者
Borsche, Raul [1 ]
Kall, Jochen [1 ]
机构
[1] Tech Univ Kaiserslautern, Fachbereich Math, Kaiserslautern, Germany
关键词
ADER; coupling; hyperbolic conservation laws; network; TRAFFIC FLOW; MODEL;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we extend the ADER-approach [12] onto networks of scalar hyperbolic conservation laws. Within a single edge of the network the classical scheme can be used. At the nodes we use the shrinking stencils of [11] to compute the out flow. The in flow conditions are computed by applying the inverse Lax-Wendroff method to the coupling conditions. Numerical examples confirm the aimed rates convergence and the stability for discontinuous solutions.
引用
收藏
页码:333 / 340
页数:8
相关论文
共 50 条