Empirical likelihood confidence intervals for the endpoint of a distribution function

被引:11
|
作者
Li, Deyuan [2 ]
Peng, Liang [1 ]
Qi, Yongcheng [3 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Fudan Univ, Dept Stat, Sch Management, Shanghai 200433, Peoples R China
[3] Univ Minnesota, Dept Math & Stat, Duluth, MN 55812 USA
关键词
Confidence interval; Coverage probability; Empirical likelihood method; Endpoint; MAXIMUM; ESTIMATOR; PARAMETER; INDEX;
D O I
10.1007/s11749-010-0204-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimating the endpoint of a distribution function is of interest in product analysis and predicting the maximum lifetime of an item. In this paper, we propose an empirical likelihood method to construct a confidence interval for the endpoint. A simulation study shows the proposed confidence interval has better coverage accuracy than the normal approximation method, and bootstrap calibration improves the accuracy.
引用
收藏
页码:353 / 366
页数:14
相关论文
共 50 条
  • [1] Empirical likelihood confidence intervals for the endpoint of a distribution function
    Deyuan Li
    Liang Peng
    Yongcheng Qi
    TEST, 2011, 20 : 353 - 366
  • [2] Empirical likelihood based confidence intervals for copulas
    Chen, Jian
    Peng, Liang
    Zhao, Yichuan
    JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (01) : 137 - 151
  • [3] Empirical Likelihood Confidence Intervals for Distribution Functions under Negatively Associated Samples
    Li, Yufang
    Qin, Yongsong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (23) : 4357 - 4364
  • [4] Empirical likelihood confidence intervals for adaptive cluster sampling
    Salehi, Mohammad
    Mohammadi, Mohammad
    Rao, J. N. K.
    Berger, Yves G.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2010, 17 (01) : 111 - 123
  • [5] On the robustness of empirical likelihood ratio confidence intervals for location
    Tsao, M
    Zhou, J
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2001, 29 (01): : 129 - 140
  • [6] Smoothed empirical likelihood confidence intervals for the difference of quantiles
    Zhou, W
    Jing, BY
    STATISTICA SINICA, 2003, 13 (01) : 83 - 95
  • [7] Empirical likelihood confidence intervals for complex sampling designs
    Berger, Y. G.
    Torres, O. De La Riva
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (02) : 319 - 341
  • [8] EMPIRICAL LIKELIHOOD CONFIDENCE INTERVALS FOR DEPENDENT DURATION DATA
    El Ghouch, Anouar
    Van Keilegom, Ingrid
    McKeague, Ian W.
    ECONOMETRIC THEORY, 2011, 27 (01) : 178 - 198
  • [9] SMOOTHED EMPIRICAL LIKELIHOOD CONFIDENCE-INTERVALS FOR QUANTILES
    CHEN, SX
    HALL, P
    ANNALS OF STATISTICS, 1993, 21 (03): : 1166 - 1181
  • [10] Empirical likelihood confidence intervals for nonparametric density estimation
    Chen, SX
    BIOMETRIKA, 1996, 83 (02) : 329 - 341