Empirical likelihood confidence intervals for the endpoint of a distribution function

被引:0
|
作者
Deyuan Li
Liang Peng
Yongcheng Qi
机构
[1] Fudan University,Department of Statistics, School of Management
[2] Georgia Institute of Technology,School of Mathematics
[3] University of Minnesota–Duluth,Department of Mathematics and Statistics
来源
TEST | 2011年 / 20卷
关键词
Confidence interval; Coverage probability; Empirical likelihood method; Endpoint; 62G32; 62G15;
D O I
暂无
中图分类号
学科分类号
摘要
Estimating the endpoint of a distribution function is of interest in product analysis and predicting the maximum lifetime of an item. In this paper, we propose an empirical likelihood method to construct a confidence interval for the endpoint. A simulation study shows the proposed confidence interval has better coverage accuracy than the normal approximation method, and bootstrap calibration improves the accuracy.
引用
收藏
页码:353 / 366
页数:13
相关论文
共 50 条
  • [1] Empirical likelihood confidence intervals for the endpoint of a distribution function
    Li, Deyuan
    Peng, Liang
    Qi, Yongcheng
    TEST, 2011, 20 (02) : 353 - 366
  • [2] Empirical likelihood based confidence intervals for copulas
    Chen, Jian
    Peng, Liang
    Zhao, Yichuan
    JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (01) : 137 - 151
  • [3] Empirical Likelihood Confidence Intervals for Distribution Functions under Negatively Associated Samples
    Li, Yufang
    Qin, Yongsong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (23) : 4357 - 4364
  • [4] Empirical likelihood confidence intervals for adaptive cluster sampling
    Salehi, Mohammad
    Mohammadi, Mohammad
    Rao, J. N. K.
    Berger, Yves G.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2010, 17 (01) : 111 - 123
  • [5] On the robustness of empirical likelihood ratio confidence intervals for location
    Tsao, M
    Zhou, J
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2001, 29 (01): : 129 - 140
  • [6] Smoothed empirical likelihood confidence intervals for the difference of quantiles
    Zhou, W
    Jing, BY
    STATISTICA SINICA, 2003, 13 (01) : 83 - 95
  • [7] Empirical likelihood confidence intervals for complex sampling designs
    Berger, Y. G.
    Torres, O. De La Riva
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (02) : 319 - 341
  • [8] EMPIRICAL LIKELIHOOD CONFIDENCE INTERVALS FOR DEPENDENT DURATION DATA
    El Ghouch, Anouar
    Van Keilegom, Ingrid
    McKeague, Ian W.
    ECONOMETRIC THEORY, 2011, 27 (01) : 178 - 198
  • [9] SMOOTHED EMPIRICAL LIKELIHOOD CONFIDENCE-INTERVALS FOR QUANTILES
    CHEN, SX
    HALL, P
    ANNALS OF STATISTICS, 1993, 21 (03): : 1166 - 1181
  • [10] Empirical likelihood confidence intervals for nonparametric density estimation
    Chen, SX
    BIOMETRIKA, 1996, 83 (02) : 329 - 341