Empirical likelihood confidence intervals for the endpoint of a distribution function

被引:11
|
作者
Li, Deyuan [2 ]
Peng, Liang [1 ]
Qi, Yongcheng [3 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Fudan Univ, Dept Stat, Sch Management, Shanghai 200433, Peoples R China
[3] Univ Minnesota, Dept Math & Stat, Duluth, MN 55812 USA
关键词
Confidence interval; Coverage probability; Empirical likelihood method; Endpoint; MAXIMUM; ESTIMATOR; PARAMETER; INDEX;
D O I
10.1007/s11749-010-0204-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimating the endpoint of a distribution function is of interest in product analysis and predicting the maximum lifetime of an item. In this paper, we propose an empirical likelihood method to construct a confidence interval for the endpoint. A simulation study shows the proposed confidence interval has better coverage accuracy than the normal approximation method, and bootstrap calibration improves the accuracy.
引用
收藏
页码:353 / 366
页数:14
相关论文
共 50 条