Dosimetry Validation Study for Automated Head and Neck Cancer Organs at Risk Segmentation Using Stratified Learning and Neural Architecture Search

被引:0
|
作者
Ge, J. [1 ]
Guo, D. [2 ]
Ye, X. [3 ]
Song, Y. [1 ]
Hua, X. [4 ]
Lu, L. [2 ]
Lin, C. Y. [5 ,6 ]
Jin, D. [2 ]
Ho, T. Y. [7 ]
机构
[1] Zhejiang Univ, Sch Med, Affiliated Hosp 1, Dept Radiat Oncol, Hangzhou, Peoples R China
[2] Alibaba Grp USA Inc, New York, NY USA
[3] Zhejiang Univ, Sch Med, Affiliated Hosp 1, Dept Radiat Oncol, Hangzhou, Peoples R China
[4] Alibaba Grp Hangzhou Inc, Hangzhou, Peoples R China
[5] Chang Gung Mem Hosp, Dept Radiat Oncol, Taoyuan, Taiwan
[6] Chang Gung Mem Hosp, Proton Ctr, Taoyuan, Taiwan
[7] Chang Gung Mem Hosp, Dept Nucl Med, Taoyuan, Taiwan
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
3309
引用
收藏
页码:E583 / E583
页数:1
相关论文
共 50 条
  • [41] Segmentation of head-and-neck organs-at-risk in longitudinal CT scans combining deformable registrations and convolutional neural networks
    Vandewinckele L.
    Willems S.
    Robben D.
    Van Der Veen J.
    Crijns W.
    Nuyts S.
    Maes F.
    Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2020, 8 (05): : 519 - 528
  • [42] A simple single-cycle interactive strategy to improve deep learning-based segmentation of organs-at-risk in head-and-neck cancer
    Rasmussen, Mathis Ersted
    Nijkamp, Jasper Albertus
    Eriksen, Jesper Grau
    Korreman, Stine Sofia
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2023, 26
  • [43] Automated Segmentation of Head and Neck Cancer Patients Using 3D U-Net
    Tong, N.
    Gou, S.
    Sheng, K.
    MEDICAL PHYSICS, 2018, 45 (06) : E472 - E472
  • [44] Evaluation of a semi-automated segmentation method for delineation of organs at risk and lymph node target volumes in head and neck radiotherapy planning
    Kaus, M. R.
    Kim, J.
    O'Sullivan, B.
    Mansouri, A.
    Breen, S.
    Dawson, L. A.
    Jaffray, D. A.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2006, 66 (03): : S48 - S48
  • [45] Validation of an Automated Segmentation Method for Head and Neck Adaptive Radiotherapy using Cone-beam Computed Tomography (CBCT)
    Chau, L.
    Allaire, S.
    Brock, K. K.
    Pekar, V.
    Waldron, J. N.
    Breen, S. L.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2009, 75 (03): : S143 - S143
  • [46] Auto-segmentation of organs at risk for head and neck radiotherapy planning: From atlas-based to deep learning methods
    Vrtovec, Tomaz
    Mocnik, Domen
    Strojan, Primoz
    Pernus, Franjo
    Ibragimov, Bulat
    MEDICAL PHYSICS, 2020, 47 (09) : E929 - E950
  • [47] Is Public Data Enough? A Comparison of Public and Institutional Deep Learning Models for Segmentation of 17 Organs-At-Risk in the Head and Neck
    Clark, Brett
    Hardcastle, Nicholas
    Jackson, Price
    Johnston, Leigh
    Korte, James
    MEDICAL PHYSICS, 2022, 49 (06) : E158 - E159
  • [48] Development and Validation of an Automated Image-Based Deep Learning Platform for Sarcopenia Assessment in Head and Neck Cancer
    Ye, Zezhong
    Saraf, Anurag
    Ravipati, Yashwanth
    Hoebers, Frank
    Catalano, Paul J.
    Zha, Yining
    Zapaishchykova, Anna
    Likitlersuang, Jirapat
    Guthier, Christian
    Tishler, Roy B.
    Schoenfeld, Jonathan D.
    Margalit, Danielle N.
    Haddad, Robert I.
    Mak, Raymond H.
    Naser, Mohamed
    Wahid, Kareem A.
    Sahlsten, Jaakko
    Jaskari, Joel
    Kaski, Kimmo
    Maekitie, Antti A.
    Fuller, Clifton D.
    Aerts, Hugo J. W. L.
    Kann, Benjamin H.
    JAMA NETWORK OPEN, 2023, 6 (08) : E2328280
  • [49] Automatic segmentation of organs-at-risk from head-and-neck CT using separable convolutional neural network with hard-region-weighted loss
    Lei, Wenhui
    Mei, Haochen
    Sun, Zhengwentai
    Ye, Shan
    Gu, Ran
    Wang, Huan
    Huang, Rui
    Zhang, Shichuan
    Zhang, Shaoting
    Wang, Guotai
    NEUROCOMPUTING, 2021, 442 : 184 - 199
  • [50] Automatic segmentation of head and neck organs at risk based on three-dimensional U-NET deep convolutional neural network
    Dai, Xiangkun
    Wang, Xiaoshen
    Du, Lehui
    Ma, Na
    Xu, Shouping
    Cai, Boning
    Wang, Shuxin
    Wang, Zhonguo
    Qu, Baolin
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2020, 37 (01): : 136 - 141